留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(7)

数据统计

分享

计量
  • 文章访问数:  305
  • HTML全文浏览量:  128
  • PDF下载量:  17
  • 被引次数: 0
Kevin Huang, A thermodynamic perspective on electrode poisoning in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1449-1455. https://doi.org/10.1007/s12613-023-2783-6
Cite this article as:
Kevin Huang, A thermodynamic perspective on electrode poisoning in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1449-1455. https://doi.org/10.1007/s12613-023-2783-6
引用本文 PDF XML SpringerLink
研究论文Open Access

固体氧化物燃料电池电极中毒的热力学研究




  • 通讯作者:

    Kevin Huang    E-mail: huang46@cec.sc.edu

  • 清洁高效固体氧化物燃料电池(SOFC)技术商业化面临的一个关键挑战是与电池组件和化学原料相关的各种降解机制导致电池堆寿命不足。电池组件相关降解是指电池材料在工作条件下的热/化学/电化学恶化,而后者涉及氧化剂(空气)和还原剂(燃料)原料中的杂质。本文从热力学角度对SOFCs中杂质诱导的降解机制进行了研究。讨论的重点是利用热力学分析来阐明阴极中Cr、CO2、H2O和SO2等杂质的中毒机制,以及阳极中S(或H2S)、SiO2和P2(或PH3)等杂质的中毒机制。作者希望其提出的基本观点可以为寻找更好的技术解决方案提供理论基础,以解决关键的退化挑战。
  • Research ArticleOpen Access

    A thermodynamic perspective on electrode poisoning in solid oxide fuel cells

    + Author Affiliations
    • A critical challenge to the commercialization of clean and high-efficiency solid oxide fuel cell (SOFC) technology is the insufficient stack lifespan caused by a variety of degradation mechanisms, which are associated with cell components and chemical feedstocks. Cell components related degradation refers to thermal/chemical/electrochemical deterioration of cell materials under operating conditions, whereas the latter regards impurities in feedstocks of oxidant (air) and reductant (fuel). This article provides a thermodynamic perspective on the understanding of the impurities-induced degradation mechanisms in SOFCs. The discussion focuses on using thermodynamic analysis to elucidate poisoning mechanisms in cathodes by impurity species such as Cr, CO2, H2O, and SO2 and in the anode by species such as S (or H2S), SiO2, and P2 (or PH3). The author hopes the presented fundamental insights can provide a theoretical foundation for searching for better technical solutions to address the critical degradation challenges.
    • loading
    • [1]
      D.K. Niakolas, Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels, Appl. Catal. A, 486(2014), p. 123. doi: 10.1016/j.apcata.2014.08.015
      [2]
      S.P. Jiang and X.B. Chen, Chromium deposition and poisoning of cathodes of solid oxide fuel cells–A review, Int. J. Hydrogen Energy, 39(2014), No. 1, p. 505. doi: 10.1016/j.ijhydene.2013.10.042
      [3]
      Z.B. Yang, M.Y. Guo, N. Wang, C.Y. Ma, J.L. Wang, and M.F. Han, A short review of cathode poisoning and corrosion in solid oxide fuel cell, Int. J. Hydrogen Energy, 42(2017), No. 39, p. 24948. doi: 10.1016/j.ijhydene.2017.08.057
      [4]
      C.W. Sun, R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: A review, J. Solid State Electrochem., 14(2010), No. 7, p. 1125. doi: 10.1007/s10008-009-0932-0
      [5]
      K. Hilpert, D. Das, M. Miller, D.H. Peck, and R.Weiß, Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes, J. Electrochem. Soc., 143(1996), No. 11, p. 3642. doi: 10.1149/1.1837264
      [6]
      S.P. Jiang, Activation, microstructure, and polarization of solid oxide fuel cell cathodes, J. Solid State Electrochem., 11(2007), No. 1, p. 93. doi: 10.1007/s10008-005-0076-9
      [7]
      H.G. Desta, D. Tian, Q. Yang, et al., Developing a new Sr and Co-free composite cathode of solid oxide fuel cells with high performance, Chem. Phys. Lett., 806(2022), art. No. 140037. doi: 10.1016/j.cplett.2022.140037
      [8]
      F. Pişkin, R. Bliem, and B. Yildiz, Effect of crystal orientation on the segregation of aliovalent dopants at the surface of La0.6Sr0.4CoO3, J. Mater. Chem. A, 6(2018), No. 29, p. 14136. doi: 10.1039/C8TA01293H
      [9]
      Y.T. Wen, T.R. Yang, D. Lee, H.N. Lee, E.J. Crumlin, and K. Huang, Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3− δ epitaxial films, J. Mater. Chem. A, 6(2018), No. 47, p. 24378. doi: 10.1039/C8TA08355J
      [10]
      F.F. Wang, H. Kishimoto, T. Ishiyama, et al., A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells, J. Power Sources, 478(2020), art. No. 228763. doi: 10.1016/j.jpowsour.2020.228763
      [11]
      J. Hong, M.R. Anisur, S.J. Heo, P.K. Dubey, and P. Singh, Sulfur poisoning and performance recovery of SOFC air electrodes, Front. Energy Res., 9(2021), art. No. 643431. doi: 10.3389/fenrg.2021.643431
      [12]
      R.R. Liu, S. Taniguchi, Y. Shiratori, K. Ito, and K. Sasaki, Influence of SO2 on the long-term durability of SOFC cathodes, ECS Trans., 35(2011), No. 1, p. 2255. doi: 10.1149/1.3570221
      [13]
      E. Bucher, C. Gspan, and W. Sitte, Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3− δ in SO2-containing atmospheres, Solid State Ionics, 272(2015), p. 112. doi: 10.1016/j.ssi.2015.01.009
      [14]
      F. Wang, K. Yamaji, D.H. Cho, et al., Evaluation of sulfur dioxide poisoning for LSCF cathodes, Fuel Cells, 13(2013), No. 4, p. 520. doi: 10.1002/fuce.201200172
      [15]
      T. Daio, P. Mitra, S.M. Lyth, and K. Sasaki, Atomic-resolution analysis of degradation phenomena in SOFCS: A case study of SO2 poisoning in LSM cathodes, Int. J. Hydrogen Energy, 41(2016), No. 28, p. 12214. doi: 10.1016/j.ijhydene.2016.05.216
      [16]
      R. Wang, L.R. Parent, S. Gopalan, and Y. Zhong, Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials, Adv. Powder Mater., 2(2023), No. 1, art. No. 100062. doi: 10.1016/j.apmate.2022.100062
      [17]
      J.A. Schuler, H. Yokokawa, C.F. Calderone, et al., Combined Cr and S poisoning in solid oxide fuel cell cathodes, J. Power Sources, 201(2012), p. 112. doi: 10.1016/j.jpowsour.2011.10.123
      [18]
      C.H. Bartholomew, P.K. Agrawal, and J.R. Katzer, Sulfur poisoning of metals, Adv. Catal., 31(1982), p. 135.
      [19]
      S.W. Zha, Z. Cheng, and M.L. Liu, Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells, J. Electrochem. Soc., 154(2007), No. 2, p. B201. doi: 10.1149/1.2404779
      [20]
      J.G. McCarty and H. Wise, Thermodynamics of sulfur chemisorption on metals. I. Alumina-supported nickel, J. Chem. Phys., 72(1980), No. 12, p. 6332. doi: 10.1063/1.439156
      [21]
      M. Yamada, H. Hirashima, A. Kitada, K.I. Izumi, and J. Nakamura, Three-Ni-atom cluster formed by sulfur adsorption on Ni(111), Surf. Sci., 602(2008), No. 9, p. 1659. doi: 10.1016/j.susc.2008.02.033
      [22]
      G.A. Sargent, G.B. Freeman, and J.L.R. Chao, Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries, Surf. Sci., 100(1980), No. 2, p. 342. doi: 10.1016/0039-6028(80)90377-5
      [23]
      C.C. Xu, J.W. Zondlo, H.O. Finklea, O. Demircan, M.Y. Gong, and X.B. Liu, The effect of phosphine in syngas on Ni–YSZ anode-supported solid oxide fuel cells, J. Power Sources, 193(2009), No. 2, p. 739. doi: 10.1016/j.jpowsour.2009.04.044
      [24]
      C.C. Xu, J.W. Zondlo, M.Y. Gong, and X.B. Liu, Effect of PH3 poisoning on a Ni–YSZ anode-supported solid oxide fuel cell under various operating conditions, J. Power Sources, 196(2011), No. 1, p. 116. doi: 10.1016/j.jpowsour.2010.07.018

    Catalog


    • /

      返回文章
      返回