留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(10)

数据统计

分享

计量
  • 文章访问数:  506
  • HTML全文浏览量:  220
  • PDF下载量:  52
  • 被引次数: 0
Peixiong Zhang, Enhui Wang, Jingjing Liu, Tao Yang, Hailong Wang, and Xinmei Hou, Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1651-1658. https://doi.org/10.1007/s12613-023-2788-1
Cite this article as:
Peixiong Zhang, Enhui Wang, Jingjing Liu, Tao Yang, Hailong Wang, and Xinmei Hou, Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1651-1658. https://doi.org/10.1007/s12613-023-2788-1
引用本文 PDF XML SpringerLink
研究论文

高熵多孔磷酸盐陶瓷的制备、结构及其隔热机理研究


  • 通讯作者:

    王恩会    E-mail: wangenhui@ustb.edu.cn

    侯新梅    E-mail: houxinmeiustb@ustb.edu.cn

文章亮点

  • (1) 制备了单相元素分布均匀的高熵(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4粉体,晶体结构为单斜独居石结构,属于P21/n (Z = 4)空间群。
  • (2) 研究了淀粉含量对高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷的物相组成、微观结构、孔径分布及尺寸、力学性能和热学性能的影响。
  • (3) 探索了高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷的隔热机理,遴选出适用于淀粉造孔法制备的高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷的室温热导率预测模型。
  • 多孔陶瓷由于具有孔隙率高、低密度和低热导率等优点广泛应用于隔热材料。目前,氧化物陶瓷例如YSZ、钙长石和Y2SiO5由于具有良好的抗氧化性和耐腐蚀性被广泛用作隔热材料。尽管这些多孔材料具有明显的优势,但它们仍然有一些缺点,这些陶瓷材料由于存在较高的热导率和高温相稳定性较差的问题而被有所限制。近年来,由于航空航天的热防护材料提出了更高的要求,迫切需要寻找新型的高性能轻质高强度隔热材料。稀土磷酸盐(REPO4, RE = La–Gd)由于具有高熔点、良好的高温相稳定性等一系列优异的性能,被认为是隔热材料的有力候选者。然而,对稀土磷酸盐陶瓷的研究主要集中在致密陶瓷块体和热/环境障涂层上,目前关于多孔磷酸盐隔热材料研究的报道很少。高熵策略通过增加构型熵可以提高材料的力学性能和相稳定性、降低热导率、晶粒生长速率,是调控材料性能的热门和可行手段。本工作以稀土硝酸盐(RE(NO3)3·6H2O, RE = La, Ce, Pr, Sm, Eu, Gd)和H3PO4为原料,采用化学共沉淀法制备了高熵(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4粉体。在此基础上,以淀粉为造孔剂,制备了不同淀粉含量的高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷,研究了淀粉含量对高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷的物相组成、微观结构、孔径分布及尺寸、热导率和耐压强度的影响。研究结果表明,利用淀粉造孔法制备的高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷具有分级孔隙结构,分别为孔径尺寸10 μm的球形大孔和0.5–1.5 μm的小孔。随着淀粉含量的增加,高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷的孔隙率增加,热导率和耐压强度呈现降低的变化趋势。当淀粉添加量为60wt%时,高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷具有较低的热导率(0.061 W/(m·K))、耐压强度(0.23 MPa)和良好的高温孔结构稳定性(收缩率为1.67%),这些优异的性能表明高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷具有优异的高温隔热性能,有望作为新型的隔热材料使用。此外,由于淀粉造孔法制备的孔结构的特性,高熵多孔(La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4陶瓷的室温热导率与ME2模型预测的热导率结果变化趋势基本符合。
  • Research Article

    Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring

    + Author Affiliations
    • Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures. In this study, a new porous high-entropy (La1/6Ce1/6Pr1/6Sm1/6Eu1/6Gd1/6)PO4 (HE (6RE1/6)PO4) ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents (0–60vol%) on this ceramic properties was systematically investigated. The results show that the porous HE (6RE1/6)PO4 ceramics with 60vol% starch exhibit the lowest thermal conductivity of 0.061 W·m−1·K−1 at room temperature and good pore structure stability with a linear shrinkage of approximately 1.67%. Moreover, the effect of large regular spherical pores (>10 μm) on its thermal insulation performance was discussed, and an optimal thermal conductivity prediction model was screened. The superior properties of the prepared porous HE (6RE1/6)PO4 ceramics allow them to be promising insulation materials in the future.
    • loading
    • [1]
      J. Yang, X. Qian, W. Pan, et al., Diffused lattice vibration and ultralow thermal conductivity in the binary Ln–Nb–O oxide system, Adv. Mater., 31(2019), No. 24, art. No. 1808222. doi: 10.1002/adma.201808222
      [2]
      R.W. Yang, Y.P. Liang, J. Xu, et al., Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance, J. Mater. Sci. Technol., 116(2022), p. 94. doi: 10.1016/j.jmst.2021.10.050
      [3]
      C. Miao, L.X. Liang, F. Zhang, et al., Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 424. doi: 10.1007/s12613-021-2360-9
      [4]
      B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D.S. Smith, Thermal conductivity of highly porous zirconia, J. Eur. Ceram. Soc., 26(2006), No. 16, p. 3567. doi: 10.1016/j.jeurceramsoc.2005.11.011
      [5]
      Y. Han, C.W. Li, C. Bian, S.B. Li, and C.G. Wang, Porous anorthite ceramics with ultra-low thermal conductivity, J. Eur. Ceram. Soc., 33(2013), No. 13-14, p. 2573. doi: 10.1016/j.jeurceramsoc.2013.04.006
      [6]
      D.Y. Li and M.S. Li, Porous Y2SiO5 ceramic with low thermal conductivity, J. Mater. Sci. Technol., 28(2012), No. 9, p. 799. doi: 10.1016/S1005-0302(12)60133-9
      [7]
      Z.L. Tian, L.Y. Zheng, J.M. Wang, P. Wan, J.L. Li, and J.Y. Wang, Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications, J. Eur. Ceram. Soc., 36(2016), No. 1, p. 189. doi: 10.1016/j.jeurceramsoc.2015.09.013
      [8]
      Y.N. Sun, H.M. Xiang, F.Z. Dai, et al., Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites, J. Adv. Ceram., 10(2021), No. 3, p. 596. doi: 10.1007/s40145-021-0461-6
      [9]
      A.B. Du, C.L. Wan, Z.X. Qu, and W. Pan, Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd), J. Am. Ceram. Soc., 92(2009), No. 11, p. 2687. doi: 10.1111/j.1551-2916.2009.03244.x
      [10]
      J. Feng, B. Xiao, R. Zhou, and W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater., 61(2013), No. 19, p. 7364. doi: 10.1016/j.actamat.2013.08.043
      [11]
      Z.F. Zhao, H. Chen, H.M. Xiang, et al., (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3, J. Mater. Sci. Technol., 35(2019), No. 12, p. 2892. doi: 10.1016/j.jmst.2019.08.012
      [12]
      P.X. Zhang, E.H. Wang, C.Y. Guo, T. Yang, and X.M. Hou, High-entropy rare earth phosphates (REPO4, RE = Ho, Tm, Yb, Lu, Dy, Er and Y) with excellent comprehensive properties, J. Eur. Ceram. Soc., 44(2024), No. 3, p. 1873. doi: 10.1016/j.jeurceramsoc.2023.10.026
      [13]
      S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R: Rep., 146(2021), art. No. 100644. doi: 10.1016/j.mser.2021.100644
      [14]
      P. Sarker, T. Harrington, C. Toher, et al., High-entropy high-hardness metal carbides discovered by entropy descriptors, Nat. Commun., 9(2018), art. No. 4980. doi: 10.1038/s41467-018-07160-7
      [15]
      P.X. Zhang, X.J. Duan, X.C. Xie, et al., Xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4: A promising thermal/environmental barrier coating material for SiCf/SiC ceramic matrix composites, J. Adv. Ceram., 12(2023), No. 5, p. 1033. doi: 10.26599/JAC.2023.9220736
      [16]
      Z.J. Shao, Z. Wu, L.C. Sun, et al., High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties, J. Mater. Sci. Technol., 119(2022), p. 190. doi: 10.1016/j.jmst.2021.12.030
      [17]
      D.B. Liu, Z.L. Zhou, Y.G. Wang, and B.S. Xu, Highly porous (La1/5Nd1/5Sm1/5Gd1/5Yb1/5)2Zr2O7 ceramics with ultra-low thermal conductivity, Ceram. Int., 48(2022), No. 18, p. 26400. doi: 10.1016/j.ceramint.2022.05.330
      [18]
      D.B. Liu, X.L. Jia, B.L. Shi, Y.G. Wang, and B.S. Xu, (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Si2O7: A novel high-entropy rare earth disilicate porous ceramics with high porosity and low thermal conductivity, Mater. Chem. Phys., 286(2022), art. No. 126181. doi: 10.1016/j.matchemphys.2022.126181
      [19]
      T.X. Li, S.D. Wang, W.X. Fan, et al., CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy, Acta Mater., 246(2023), art. No. 118728. doi: 10.1016/j.actamat.2023.118728
      [20]
      T.X. Li, W.N. Jiao, J.W. Miao, et al., A novel ZrNbMoTaW refractory high-entropy alloy with in situ forming heterogeneous structure, Mater. Sci. Eng. A, 827(2021), art. No. 142061. doi: 10.1016/j.msea.2021.142061
      [21]
      P.X. Zhang, E.H. Wang, X.J. Duan, et al., Preparation and characterization of a novel monazite-type high-entropy (La1/7Ce1/7Pr1/7Nd1/7Sm1/7Eu1/7Gd1/7)PO4 for thermal/environmental barrier coatings, J. Alloys Compd., 952(2023), art. No. 169978. doi: 10.1016/j.jallcom.2023.169978
      [22]
      W.L. Huo, X.Y. Zhang, Y.G. Chen, et al., Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 99(2016), No. 11, p. 3512. doi: 10.1111/jace.14555
      [23]
      X.Y. Meng, J. Xu, R.W. Yang, et al., Lanthanum zirconate porous ceramics with controllable secondary pores for high-temperature thermal insulation, Ceram. Int., 48(2022), No. 22, p. 33976. doi: 10.1016/j.ceramint.2022.07.347
      [24]
      X.Y. Meng, J. Xu, J.T. Zhu, et al., Enhancing the thermal insulating properties of lanthanum zirconate porous ceramics via pore structure tailoring, J. Eur. Ceram. Soc., 41(2021), No. 12, p. 6010. doi: 10.1016/j.jeurceramsoc.2021.05.032
      [25]
      W. Yan, N. Li, and B.Q. Han, Preparation and characterization of porous ceramics prepared by kaolinite gangue and Al(OH)3 with double addition of MgCO3 and CaCO3, Int. J. Miner. Metall. Mater., 18(2011), No. 4, p. 450. doi: 10.1007/s12613-011-0461-6
      [26]
      J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309. doi: 10.1007/s12613-017-1409-2
      [27]
      X. Li, M.Y. Tao, M.B. Pan, et al., The preparation and properties of high-strength porous mullite ceramics by a novel non-toxic gelcasting process, J. Eur. Ceram. Soc., 42(2022), No. 13, p. 6015. doi: 10.1016/j.jeurceramsoc.2022.06.050
      [28]
      Y. Zhang, Y.J. Wu, X.K. Yang, et al., High-strength thermal insulating mullite nanofibrous porous ceramics, J. Eur. Ceram. Soc., 40(2020), No. 5, p. 2090. doi: 10.1016/j.jeurceramsoc.2020.01.011
      [29]
      S. Honda, S. Hashimoto, S. Yase, Y. Daiko, and Y. Iwamoto, Fabrication and thermal conductivity of highly porous alumina body from platelets with yeast fungi as a pore forming agent, Ceram. Int., 42(2016), No. 12, p. 13882. doi: 10.1016/j.ceramint.2016.05.196
      [30]
      S.K.S. Hossain, R. Pyare, and P.K. Roy, Synthesis of in situ mullite foam using waste rice husk ash derived sol by slip-casting route, Ceram. Int., 46(2020), No. 8, p. 10871. doi: 10.1016/j.ceramint.2020.01.099
      [31]
      J.J. Liu, B. Ren, Y.J. Lu, et al., Novel design of elongated mullite reinforced highly porous alumina ceramics using carbonized rice husk as pore-forming agent, Ceram. Int., 45(2019), No. 11, p. 13964. doi: 10.1016/j.ceramint.2019.04.095
      [32]
      G.G. Xu, J. Li, H.Z. Cui, Q.K. He, Z.H. Zhang, and X.Y. Zhan, Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent, Ceram. Int., 41(2015), No. 5, p. 7042. doi: 10.1016/j.ceramint.2015.02.007
      [33]
      Z. Živcová, E. Gregorová, and W. Pabst, Porous alumina ceramics produced with lycopodium spores as pore-forming agents, J. Mater. Sci., 42(2007), No. 20, p. 8760. doi: 10.1007/s10853-007-1852-y
      [34]
      Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, and Y.C. Zhou, On the potential of porous ZrP2O7 ceramics for thermal insulating and wave-transmitting applications at high temperatures, J. Eur. Ceram. Soc., 40(2020), No. 3, p. 789. doi: 10.1016/j.jeurceramsoc.2019.11.016
      [35]
      M. Fukushima and Y.I. Yoshizawa, Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route, J. Eur. Ceram. Soc., 36(2016), No. 12, p. 2947. doi: 10.1016/j.jeurceramsoc.2015.09.041
      [36]
      C. Voigt, T. Zienert, P. Schubert, C.G. Aneziris, and J.Hubálková, Reticulated porous foam ceramics with different surface chemistries, J. Am. Ceram. Soc., 97(2014), No. 7, p. 2046. doi: 10.1111/jace.12977
      [37]
      X.Y. Meng, J. Xu, J.T. Zhu, et al., Pyrochlore–fluorite dual-phase high-entropy ceramic foams with extremely low thermal conductivity from particle-stabilized suspension, Scripta Mater., 194(2021), art. No. 113714. doi: 10.1016/j.scriptamat.2020.113714
      [38]
      K. Mohanta, A. Kumar, O. Parkash, and D. Kumar, Low cost porous alumina with tailored microstructure and thermal conductivity prepared using rice husk and sucrose, J. Am. Ceram. Soc., 97(2014), No. 6, p. 1708. doi: 10.1111/jace.12946
      [39]
      R.M. Novais, M.P. Seabra, and J.A. Labrincha, Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents, Ceram. Int., 40(2014), No. 8, p. 11637. doi: 10.1016/j.ceramint.2014.03.163
      [40]
      J.J. Liu, Y.B. Li, Y.W. Li, S.B. Sang, and S.J. Li, Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent, Ceram. Int., 42(2016), No. 7, p. 8221. doi: 10.1016/j.ceramint.2016.02.032
      [41]
      H. Chen, H.M. Xiang, F.Z. Dai, et al., High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1700. doi: 10.1016/j.jmst.2019.04.006
      [42]
      X.Y. Meng, J. Xu, J.T. Zhu, et al., Porous yttria-stabilized zirconia ceramics with low thermal conductivity via a novel foam-gelcasting method, J. Mater. Sci., 55(2020), No. 31, p. 15106. doi: 10.1007/s10853-020-04900-3
      [43]
      L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, and H.P. Zhang, Thermal conductivity of highly porous mullite materials, Int. J. Heat Mass Transf., 67(2013), p. 253. doi: 10.1016/j.ijheatmasstransfer.2013.08.008
      [44]
      Z.G. Hou, J.C. Liu, H.Y. Du, H. Xu, A.R. Guo, and M. Wang, Preparation of porous Y2SiO5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method, Ceram. Int., 39(2013), No. 2, p. 969. doi: 10.1016/j.ceramint.2012.07.014
      [45]
      R.B. Zhang, D.N. Fang, X.M. Chen, Y.M. Pei, Z.D. Wang, and Y.S. Wang, Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting, Mater. Des., 46(2013), p. 746. doi: 10.1016/j.matdes.2012.11.020
      [46]
      Z. Wu, L.C. Sun, J.J. Pan, and J.Y. Wang, Fiber reinforced highly porous γ-Y2Si2O7 ceramic fabricated by foam-gelcasting-freeze drying method, Scripta Mater., 146(2018), p. 331. doi: 10.1016/j.scriptamat.2017.12.017
      [47]
      Z. Wu, L.C. Sun, P. Wan, J.N. Li, Z.J. Hu, and J.Y. Wang, In situ foam-gelcasting fabrication and properties of highly porous γ-Y2Si2O7 ceramic with multiple pore structures, Scripta Mater., 103(2015), p. 6. doi: 10.1016/j.scriptamat.2015.02.024
      [48]
      X.Y. Meng, J. Xu, J.T. Zhu, et al., Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 103(2020), No. 11, p. 6088. doi: 10.1111/jace.17341
      [49]
      W.Y. Zhou, Z. Zhang, N. Li, W. Yan, and G.T. Ye, A new mullite foamed ceramic prepared by direct-foaming methods in parallel with a mechanical activation technique, Ceram. Int., 48(2022), No. 14, p. 20721. doi: 10.1016/j.ceramint.2022.04.053
      [50]
      L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, and H.P. Zhang, A novel effective medium theory for modelling the thermal conductivity of porous materials, Int. J. Heat Mass Transf., 68(2014), p. 295. doi: 10.1016/j.ijheatmasstransfer.2013.09.043

    Catalog


    • /

      返回文章
      返回