留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(16)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  632
  • HTML全文浏览量:  279
  • PDF下载量:  21
  • 被引次数: 0
Bo Lin, Jingzhong Kuang, Yiqiang Yang, Zheyu Huang, Delong Yang, and Mingming Yu, Synergistic strengthening mechanism of Ca2+–sodium silicate to selective separation of feldspar and quartz, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1985-1995. https://doi.org/10.1007/s12613-023-2790-7
Cite this article as:
Bo Lin, Jingzhong Kuang, Yiqiang Yang, Zheyu Huang, Delong Yang, and Mingming Yu, Synergistic strengthening mechanism of Ca2+–sodium silicate to selective separation of feldspar and quartz, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1985-1995. https://doi.org/10.1007/s12613-023-2790-7
引用本文 PDF XML SpringerLink
研究论文

Ca2+–硅酸钠对长石和石英选择性分离的协同强化机理


  • 通讯作者:

    匡敬忠    E-mail: kjz692@163.com

文章亮点

  • (1)发现了一种长石和石英分离的新型组合抑制剂。
  • (2)系统研究了Ca2+–硅酸钠对长石和石英协同强化选择抑制机理。
  • (3)提出了一种中性条件下长石与石英浮选分离方案。
  • 抑制剂对石英与长石浮选分离具有重要意义。本文采用Ca2+–硅酸钠新型组合抑制剂对石英和长石浮选分离进行了研究,通过微浮选实验评价了组合抑制剂的浮选效果,分析了抑制剂作用前后长石与石英表面性质差异,探讨了其协同强化抑制机理。结果表明,Ca2+–硅酸钠对长石与石英浮选分离最佳配比:Ca2+:硅酸钠为1:5。傅里叶变换红外(FT-IR)和吸附量分析表明,组合抑制剂优先吸附在长石表面,阻止了捕收剂与长石的作用。X射线光电子能谱(XPS)显示,Ca2+直接与石英表面相互作用,强化了其对捕收剂的吸附;组合抑制剂中的Ca2+取代了长石表面的K+,改变了Al活性位点表面性质,导致长石表面形成了亲水膜,阻止了捕收剂在长石表面吸附,Ca2+–硅酸钠协同强化了长石和石英高效浮选分离。
  • Research Article

    Synergistic strengthening mechanism of Ca2+–sodium silicate to selective separation of feldspar and quartz

    + Author Affiliations
    • Inhibitors are important for flotation separation of quartz and feldspar. In this study, a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp. Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments. And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism. The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca2+ and SS in sequence under the optimal proportion of 1:5. A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired, and was found to be 90.70wt% and 83.70%, respectively. It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared (FT-IR) and adsorption capacity tests. The results of X-ray photoelectron spectroscopy (XPS) indicated that Ca2+ directly interacts with the surface of quartz to increase the adsorption of collectors. In contrast, the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na+ and Ca2+ taking the place of K+, resulting in the composite inhibitor forms a hydrophilic structure, which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site. The combination of Ca2+ and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector, thus achieving the effect of efficient separation. A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
    • loading
    • [1]
      T. Minami, S. Maeda, M. Higasa, and K. Kashima, In-situ observation of bubble formation at silicon melt-silica glass interface, J. Cryst. Growth, 318(2011), No. 1, p. 196. doi: 10.1016/j.jcrysgro.2010.10.075
      [2]
      M.F.M. Santos, E. Fujiwara, E.A. Schenkel, J. Enzweiler, and C.K. Suzuki, Processing of quartz lumps rejected by silicon industry to obtain a raw material for silica glass, Int. J. Miner. Process., 135(2015), p. 65. doi: 10.1016/j.minpro.2015.02.002
      [3]
      S.Y. Lin, R.Q. Liu, Y.H. Hu, et al., Optimize flotation process of Mo–Bi sulfide ore for cleaner production, J. Cleaner Prod., 291(2021), art. No. 125236. doi: 10.1016/j.jclepro.2020.125236
      [4]
      Z.Q. Huang, S.Y. Zhang, C. Cheng, et al., Recycling lepidolite from tantalum–niobium mine tailings by a combined magnetic-flotation process using a novel gemini surfactant: From tailings dams to the “bling” raw material of lithium, ACS Sustainable Chem. Eng., 8(2020), No. 49, p. 18206. doi: 10.1021/acssuschemeng.0c06609
      [5]
      B. Yang, S.H. Cao, Z.L. Zhu, et al., Selective flotation separation of apatite from dolomite utilizing a novel eco-friendly and efficient depressant for sustainable manufacturing of phosphate fertilizer, J. Cleaner Prod., 286(2021), art. No. 124949. doi: 10.1016/j.jclepro.2020.124949
      [6]
      Z.J. Wang, H.Q. Wu, Y.B. Xu, et al., Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite, Sep. Purif. Technol., 237(2020), art. No. 116387. doi: 10.1016/j.seppur.2019.116387
      [7]
      L.H. Xu, J. Tian, H.Q. Wu, Z.Y. Lu, W. Sun, and Y.H. Hu, The flotation and adsorption of mixed collectors on oxide and silicate minerals, Adv. Colloid Interface Sci., 250(2017), p. 1. doi: 10.1016/j.cis.2017.11.003
      [8]
      B.B. Luo, Y.M, Zhu, C.Y. Sun, Y.J Li, and Y.X. Han, The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface, Miner. Eng., 117(2018), p. 121. doi: 10.1016/j.mineng.2017.12.016
      [9]
      D.J. McKee, Automatic flotation control-A review of 20 years of effort, Miner. Eng., 4(1991), No. 7-11, p. 653. doi: 10.1016/0892-6875(91)90055-Z
      [10]
      E. Larsen and R.A. Kleiv, Flotation of quartz from quartz-feldspar mixtures by the HF method, Miner. Eng., 98(2016), p. 49. doi: 10.1016/j.mineng.2016.07.021
      [11]
      E. Larsen, P.B. Kowalczuk, and R.A. Kleiv, Non-HF collectorless flotation of quartz, Miner. Eng., 133(2019), p. 115. doi: 10.1016/j.mineng.2019.01.014
      [12]
      M.S. El-Salmawy, Y. Nakahiro, and T. Wakamatsu, The role of alkaline earth cations in flotation separation of quartz from feldspar, Miner. Eng., 6(1993), No. 12, p. 1231. doi: 10.1016/0892-6875(93)90101-R
      [13]
      Y.C. Liu, H.G. Gong, and K.R. Zhang, Adsorption of sodlim oleate and dodecyl amine hydrochloride on feldspar and quartz, Min. Metall. Eng.,13(1993), No. 2, p. 27.
      [14]
      X.S. Jiang, J. Chen, B.Y. Ban, W.F. Song, C. Chen, and X.Y. Yang, Application of competitive adsorption of ethylenediamine and polyetheramine in direct float of quartz from quartz–feldspar mixed minerals under neutral pH conditions, Miner. Eng., 188(2020), art. No. 107850.
      [15]
      N. Tan, S.F. Han, D.D. Wu, K.X. Wei, and W.H. Ma, Recovery of siliconfrom metallurgical-grade silicon-refined slag by flotation with sodium silicate as depressant, Trans. Nonferrous Met. Soc. China, 33(2023), No. 5, p. 1619. doi: 10.1016/S1003-6326(23)66208-9
      [16]
      A. Molifie, M. Becker, S. Geldenhuys, and B. McFadzean, Investigating the reasons for the improvement in flotation grade and recovery of an altered PGE ore when using sodium silicate, Miner. Eng., 195(2023), art. No. 108024. doi: 10.1016/j.mineng.2023.108024
      [17]
      G.H. Ai, W.F. Huang, X.L. Yang, and X.B. Li, Effect of collector and depressant on monomineralic surfaces in fine wolframite flotation system, Sep. Purif. Technol., 176(2017), p. 59. doi: 10.1016/j.seppur.2016.11.064
      [18]
      L.H. Xu, H.Q. Wu, F.Q. Dong, L. Wang, Z. Wang, and J.H. Xiao, Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica, Miner. Eng., 41(2013), p. 41. doi: 10.1016/j.mineng.2012.10.015
      [19]
      J.F. He, H. Chen, M.M. Zhang, et al., Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz, Colloids Surf. A, 643(2022), art. No. 128702. doi: 10.1016/j.colsurfa.2022.128702
      [20]
      Q.C Feng, S.M. Wen, W.J. Zhao, and Y. Chen, Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation, Sep. Purif. Technol., 200(2018), p. 300. doi: 10.1016/j.seppur.2018.02.048
      [21]
      G.C. Gong, P. Wang, J. Liu, Y.X. Han, and Y.M. Zhu, Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite, Sep. Purif. Technol., 238(2020), art. No. 116401. doi: 10.1016/j.seppur.2019.116401
      [22]
      P.M.S. Carvalho, S. Pessanha, J. Machado, et al., Energy dispersive X-ray fluorescence quantitative analysis of biological samples with the external standard method, Spectrochim. Acta, Part B, 174(2020), art. No. 105991. doi: 10.1016/j.sab.2020.105991
      [23]
      N.R. Yang, Test Methods for Inorganic Nonmetallic Materials, Wuhan University of Technology Press, Wuhan, 1990, p. 77.
      [24]
      S.Y. Zhang, J.Z. Kuang, M.M. Yu, W.Q. Yuan, and Z.Y. Huang, Effect of ultrasonication of sodium silicate on selective adsorption of scheelite and fluorite surfaces, Colloids Surf. A, 642(2022), art. No. 128633. doi: 10.1016/j.colsurfa.2022.128633
      [25]
      W.J. Liu, S.Q. Zhang, W.Q. Wang, et al., The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL, Miner. Eng., 79(2015), p. 40. doi: 10.1016/j.mineng.2015.05.008
      [26]
      Y. Guo, B. Yang, Z.K. Fu, and S.L. Ren, Enhancing the floatability of smithsonite mixed with silicate minerals by using a novel dispersant of cetylpyridinium bromide, Miner. Eng., 185(2022), art. No. 107711. doi: 10.1016/j.mineng.2022.107711
      [27]
      W. Zhang, R.Q. Honaker, and J.G. Groppo, Flotation of monazite in the presence of calcite part I: Calcium ion effects on the adsorption of hydroxamic acid, Miner. Eng., 100(2017), p. 40. doi: 10.1016/j.mineng.2016.09.020
      [28]
      Z. Cao, Z.Y. Cheng, J.L. Wang, and Y.D. Cao, Synergistic depression mechanism of Ca2+ ions and sodium silicate on bastnaesite flotation, J. Rare Earths, 40(2022), No. 6, p. 988. doi: 10.1016/j.jre.2021.04.006
      [29]
      J. Tian, L.H. Xu, W. Deng, H. Jiang, Z.Y. Gao, and Y.H. Hu, Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system, Chem. Eng. Sci., 164(2017), p. 99. doi: 10.1016/j.ces.2017.02.013
      [30]
      B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface, Miner. Eng., 77(2015), p. 86. doi: 10.1016/j.mineng.2015.03.003
      [31]
      R.Q. Xie, Y.M. Zhu, J. Liu, X. Wang, and Y.J. Li, Differential collecting performance of a new complex of decyloxy-propyl-amine and α-bromododecanoic acid on flotation of spodumene and feldspar, Miner. Eng., 153(2020), art. No. 106377. doi: 10.1016/j.mineng.2020.106377
      [32]
      L.O. Filippov, V.V. Severov, and I.V. Filippova, Mechanism of starch adsorption on Fe–Mg–Al-bearing amphiboles, Int. J. Miner. Process., 123(2013), p. 120. doi: 10.1016/j.minpro.2013.05.010
      [33]
      Y.F. Wang, S. Ahmed Khoso, X.M. Luo, and M.J. Tian, Understanding the depression mechanism of citric acid in sodium oleate flotation of Ca2+-activated quartz: Experimental and DFT study, Miner. Eng., 140(2019), art. No. 105878. doi: 10.1016/j.mineng.2019.105878

    Catalog


    • /

      返回文章
      返回