留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(16)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  582
  • HTML全文浏览量:  208
  • PDF下载量:  32
  • 被引次数: 0
Qicheng Feng, Wanming Lu, Han Wang,  and Qian Zhang, Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2159-2172. https://doi.org/10.1007/s12613-023-2793-4
Cite this article as:
Qicheng Feng, Wanming Lu, Han Wang,  and Qian Zhang, Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2159-2172. https://doi.org/10.1007/s12613-023-2793-4
引用本文 PDF XML SpringerLink
研究论文

孔雀石梯级活化浮选机制及增强表面活性机理研究


  • 通讯作者:

    王涵    E-mail: wanghankmust@126.com

    张谦    E-mail: zqian9865@163.com

文章亮点

  • (1) 采用铜离子梯级活化法可有效提高孔雀石的浮选回收率
  • (2) 在梯级活化体系中矿物表面活性较高的Cu-S物种占比增加说明了矿物硫化效果明显增强
  • (3) 矿物表面的Cu位点增加可提高矿物表面反应活性并为黄原酸根离子提供了更稳定地吸附环境
  • 孔雀石是一种常见的氧化铜矿物,在生产中通常使用硫化-黄药浮选法进行富集。目前,通过直接硫化的方法往往较难获得合格的铜精矿产品。因此,本项研究开发一种新的硫化浮选工艺,以提高孔雀石的浮选回收率。在本研究中,使用铜离子用作为活化剂,并与样品表面相互作用,增加矿物表面的反应位点,从而增强矿物的硫化过程和反应活性。与单一铜离子活化相比,采用铜离子梯级活化法孔雀石的浮选效果显著提高。Zeta电位、X射线光电子能谱(XPS)、飞行时间二次离子质谱(ToF–SIMS)、扫描电子显微镜和能谱仪(SEM–EDS)以及原子力显微镜(AFM)分析结果表明,经过铜离子梯级活化后,由于活性Cu位点的增加,S物种在矿物表面的吸附显著增强。同时,活性较高的Cu–S物种的比例也有所增加,进一步改善了样品表面与后续捕收剂之间的反应活性。红外光谱(FT-IR)和接触角测试表明,铜离子梯级活化后,黄原酸根离子更加容易且稳定地吸附在矿物表面,从而提高了矿物表面的疏水性。因此,铜离子梯级活化后孔雀石表面的铜位点提高了矿物表面的反应性,进而提高了孔雀石硫化浮选的回收效果。
  • Research Article

    Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance

    + Author Affiliations
    • Malachite is a common copper oxide mineral that is often enriched using the sulfidization–xanthate flotation method. Currently, the direct sulfidization method cannot yield copper concentrate products. Therefore, a new sulfidization flotation process was developed to promote the efficient recovery of malachite. In this study, Cu2+ was used as an activator to interact with the sample surface and increase its reaction sites, thereby strengthening the mineral sulfidization process and reactivity. Compared to single copper ion activation, the flotation effect of malachite significantly increased after stepwise Cu2+ activation. Zeta potential, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF–SIMS), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS), and atomic force microscopy (AFM) analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu2+ stepwise activation. Meanwhile, the proportion of active Cu–S species also increased, further improving the reaction between the sample surface and subsequent collectors. Fourier-transform infrared spectroscopy (FT-IR) and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu2+ stepwise activation, thereby improving the hydrophobicity of the mineral surface. Therefore, the copper sites on the malachite surface after Cu2+ stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.
    • loading
    • [1]
      Z.G. Yin, W. Sun, Y.H. Hu, C.H. Zhang, Q.J. Guan, and K.P. Wu, Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests, J. Cleaner Prod., 171(2018), p. 1039. doi: 10.1016/j.jclepro.2017.10.020
      [2]
      Z.H. Shen, S.M. Wen, H. Wang, et al., Effect of dissolved components of malachite and calcite on surface properties and flotation behavior, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1297. doi: 10.1007/s12613-023-2606-9
      [3]
      Q.C. Feng, W.H. Yang, S.M. Wen, H. Wang, W.J. Zhao, and G. Han, Flotation of copper oxide minerals: A review, Int. J. Min. Sci. Technol., 32(2022), No. 6, p. 1351. doi: 10.1016/j.ijmst.2022.09.011
      [4]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1117. doi: 10.1016/j.ijmst.2021.11.001
      [5]
      G.P.W. Suyantara, T. Hirajima, H. Miki, K. Sasaki, S. Kuroiwa, and Y. Aoki, Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation, Miner. Eng., 152(2020), art. No. 106371. doi: 10.1016/j.mineng.2020.106371
      [6]
      R.Z. Liu, D.W. Liu, J.L. Li, et al., Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, ToF-SIMS and FESEM investigation, Colloids Surf., A, 595(2020), art. No. 124508. doi: 10.1016/j.colsurfa.2020.124508
      [7]
      X.R. Zhang, L. Lu, Y.H. Li, Y.G. Zhu, L. Han, and C.B. Li, Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism, Sep. Purif. Technol., 255(2021), art. No. 117732. doi: 10.1016/j.seppur.2020.117732
      [8]
      Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
      [9]
      R.Z. Liu, D.W. Liu, J.L. Li, et al., Sulfidization mechanism in malachite flotation: A heterogeneous solid-liquid reaction that yields Cu xS y phases grown on malachite, Miner. Eng., 154(2020), art. No. 106420. doi: 10.1016/j.mineng.2020.106420
      [10]
      L.Q. Li, J.H. Zhao, Y.Y. Xiao, et al., Flotation performance and adsorption mechanism of malachite with tert-butylsalicylaldoxime, Sep. Purif. Technol., 210(2019), p. 843. doi: 10.1016/j.seppur.2018.08.073
      [11]
      Y.F. Fu, Y. Hou, R. Wang, et al., Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate, Miner. Eng., 173(2021), art. No. 107191. doi: 10.1016/j.mineng.2021.107191
      [12]
      G. Önal, G. Bulut, A. Gül, O. Kangal, K.T. Perek, and F. Arslan, Flotation of Aladağ oxide lead–zinc ores, Miner. Eng., 18(2005), No. 2, p. 279. doi: 10.1016/j.mineng.2004.10.018
      [13]
      Q.C. Feng, S.M. Wen, W.J. Zhao, J.S. Deng, and Y.J. Xian, Adsorption of sulfide ions on cerussite surfaces and implications for flotation, Appl. Surf. Sci., 360(2016), p. 365. doi: 10.1016/j.apsusc.2015.11.035
      [14]
      Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823. doi: 10.1016/j.apsusc.2017.12.113
      [15]
      K. Park, S. Park, J. Choi, G. Kim, M.P. Tong, and H. Kim, Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector, Sep. Purif. Technol., 168(2016), p. 1. doi: 10.1016/j.seppur.2016.04.053
      [16]
      Q. Zhang, S.M. Wen, Q.C. Feng, and J.B. Liu, Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species, Appl. Surf. Sci., 543(2021), art. No. 148795. doi: 10.1016/j.apsusc.2020.148795
      [17]
      H. Wang, S.M. Wen, G. Han, and Q.C. Feng, Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation, Appl. Surf. Sci., 550(2021), art. No. 149350. doi: 10.1016/j.apsusc.2021.149350
      [18]
      Q. Zhang, S.M. Wen, Q.C. Feng, and Y.C. Miao, Adsorption characteristics of Cu2+ species on cerussite surfaces and implications for sulfidization flotation, Sep. Purif. Technol., 282(2022), art. No. 120109. doi: 10.1016/j.seppur.2021.120109
      [19]
      Q. Zhang, S.M. Wen, and Q.C. Feng, Effect of CuSO4 on sulfidized cerussite surface properties and its response to the flotation behavior, Appl. Surf. Sci., 589(2022), art. No. 152956. doi: 10.1016/j.apsusc.2022.152956
      [20]
      J.S. Dong, Q.J. Liu, L. Yu, and S.H. Subhonqulov, Activation mechanism of copper ion in arsenopyrite flotation in high pH value, Miner. Eng., 179(2022), art. No. 107465. doi: 10.1016/j.mineng.2022.107465
      [21]
      H. Wang, S.M. Wen, G. Han, Y.X. He, and Q.C. Feng, Adsorption behavior and mechanism of copper ions in the sulfidization flotation of malachite, Int. J. Min. Sci. Technol., 32(2022), No. 4, p. 897. doi: 10.1016/j.ijmst.2022.06.006
      [22]
      W.J. Zhao, B. Yang, Y.H. Yi, Q.C. Feng, and D.W. Liu, Synergistic activation of smithsonite with copper-ammonium species for enhancing surface reactivity and xanthate adsorption, Int. J. Min. Sci. Technol., 33(2023), No. 4, p. 519. doi: 10.1016/j.ijmst.2023.03.001
      [23]
      X.Y. Cao, C.Y. Liu, X.P. Huang, et al., Uncovering the flotation performance and adsorption mechanism of a multifunctional thiocarbamate collector on malachite, Powder Technol., 407(2022), art. No. 117676. doi: 10.1016/j.powtec.2022.117676
      [24]
      Y.X. Lu, K.J. Wu, S. Wang, Z.F. Cao, X. Ma, and H. Zhong, Structural modification of hydroxamic acid collectors to enhance the flotation performance of malachite and associated mechanism, J. Mol. Liq., 344(2021), art. No. 117959. doi: 10.1016/j.molliq.2021.117959
      [25]
      H. Wang, S.M. Wen, G. Han, and Q.C. Feng, Interaction mechanism of copper ions with the surface of sulfidized malachite and its response to flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 647(2022), art. No. 129127. doi: 10.1016/j.colsurfa.2022.129127
      [26]
      Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Copper sulfide species formed on malachite surfaces in relation to flotation, J. Ind. Eng. Chem., 48(2017), p. 125. doi: 10.1016/j.jiec.2016.12.029
      [27]
      Z.L. Li, F. Rao, S.X. Song, A. Uribe-Salas, and A. López-Valdivieso, Effects of common ions on adsorption and flotation of malachite with salicylaldoxime, Colloids Surf. A Physicochem. Eng. Aspects, 577(2019), p. 421. doi: 10.1016/j.colsurfa.2019.06.004
      [28]
      C.W. Wang, L. Sun, Q.Q. Wang, et al., Adsorption mechanism and flotation behavior of ammonium salt of N-Nitroso-N-phenylhydroxyamine on malachite mineral, Appl. Surf. Sci., 583(2022), art. No. 152489. doi: 10.1016/j.apsusc.2022.152489
      [29]
      G.Y. Liu, Y.G. Huang, X.Y. Qu, J.J. Xiao, X.L. Yang, and Z.H. Xu, Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation, Colloids Surf., A, 503(2016), p. 34. doi: 10.1016/j.colsurfa.2016.05.028
      [30]
      P.L. Shen, D.W. Liu, X.L. Zhang, X.D. Jia, K.W. Song, and D. Liu, Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite, Miner. Eng., 137(2019), p. 43. doi: 10.1016/j.mineng.2019.03.015
      [31]
      Q. Zuo, J. Yang, Y.F. Shi, and D.D. Wu, Use of sodium sulfosalicylate as an activator in hemimorphite sulfidation xanthate flotation, Colloids Surf. A, 641(2022), art. No. 128552. doi: 10.1016/j.colsurfa.2022.128552
      [32]
      Q.Y. Sheng, B. Yang, S.H. Cao, et al., Adsorption of cupferron on malachite (−201) surface and implication for flotation, Miner. Eng., 169(2021), art. No. 106954. doi: 10.1016/j.mineng.2021.106954
      [33]
      B. Yang, Y.F. Fu, W.Z. Yin, Q.Y. Sheng, Z.L. Zhu, and X.M. Yin, Selective collection performance of an efficient quartz collector and its response to flotation separation of malachite from quartz, Miner. Eng., 172(2021), art. No. 107174. doi: 10.1016/j.mineng.2021.107174

    Catalog


    • /

      返回文章
      返回