留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  434
  • HTML全文浏览量:  173
  • PDF下载量:  27
  • 被引次数: 0
Qijing Guo, Cong Guo, Hao Yi, Feifei Jia, and Shaoxian Song, Vertically aligned montmorillonite aerogel–encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 907-916. https://doi.org/10.1007/s12613-023-2794-3
Cite this article as:
Qijing Guo, Cong Guo, Hao Yi, Feifei Jia, and Shaoxian Song, Vertically aligned montmorillonite aerogel–encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 907-916. https://doi.org/10.1007/s12613-023-2794-3
引用本文 PDF XML SpringerLink
研究论文

竖直多孔定向传热型蒙脱石凝胶封装聚乙二醇用于高效太阳热能收集与储存


  • 通讯作者:

    易浩    E-mail: yihao287@whut.edu.cn

    宋少先    E-mail: ssx821215@whut.edu.cn

文章亮点

  • (1) 设计构建了新型垂直多孔的定向传热型复合相变材料
  • (2) 开发的3D–Mt/PEG形状稳定性能、热性能、循环性能优异,潜热高达167.53 J/g
  • (3) 三维蒙脱石凝胶支撑材料提升了复合相变材料的阻燃性能
  • 利用相变材料(PCM)转换和存储光热能是利用清洁和可持续太阳能的最佳途径之一。本研究采用真空浸渍技术将聚乙二醇(PEG)封装至蒙脱石(Mt)气凝胶(3D-Mt)中,制备新型的3D-Mt/PEG复合相变材料。3D-Mt作为封装材料可以有效防止PEG泄漏,并充当阻燃屏障以降低PEG的可燃性。3D-Mt/PEG具有优异的形状稳定性、热稳定性和化学稳定性,其相变焓高达167.53 J/g,即使经过50次加热–冷却循环后仍可保持稳定。此外,3D-Mt的垂直多孔结构为定向热传输提供了通道,促进了有效的热传导,可实现快速的热响应和高效的热管理性能。本研究成功开发了具有较高机械强度、优异阻燃性和定向传热功能的3D-Mt/PEG复合相变材料,解决了相变材料的泄漏和阻燃性差的问题,为制备高性能复合相变材料提供了一种新的设计策略,在热管理和光热转换应用领域具有重大应用潜力。
  • Research Article

    Vertically aligned montmorillonite aerogel–encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage

    + Author Affiliations
    • The conversion and storage of photothermal energy using phase change materials (PCMs) represent an optimal approach for harnessing clean and sustainable solar energy. Herein, we encapsulated polyethylene glycol (PEG) in montmorillonite aerogels (3D-Mt) through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs. When used as a support matrix, 3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG. Simultaneously, 3D-Mt/PEG demonstrates outstanding shape retention, increased thermal energy storage density, and commendable thermal and chemical stability. The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating–cooling cycles. Furthermore, the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels, facilitating efficient phonon transfer. This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction. This study addresses the shortcomings of PCMs, including the issues of leakage and inadequate flame retardancy. It achieves the development and design of 3D-Mt/PEG with ultrahigh strength, superior flame retardancy, and directional heat transfer. Therefore, this work offers a design strategy for the preparation of high-performance composite PCMs. The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
    • loading
    • [1]
      K. Pielichowska and K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci., 65(2014), p. 67. doi: 10.1016/j.pmatsci.2014.03.005
      [2]
      L.S. Tang, J. Yang, R.Y. Bao, et al., Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide, Energy Convers. Manage., 146(2017), p. 253. doi: 10.1016/j.enconman.2017.05.037
      [3]
      Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, and G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy, 80(2021), art. No. 105454. doi: 10.1016/j.nanoen.2020.105454
      [4]
      H.Y. Wu, S.T. Li, Y.W. Shao, et al., Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability, Chem. Eng. J., 379(2020), art. No. 122373. doi: 10.1016/j.cej.2019.122373
      [5]
      Q.J. Guo, H. Yi, F.F. Jia, and S.X. Song, Design of MoS2/MMT bi-layered aerogels integrated with phase change materials for sustained and efficient solar desalination, Desalination, 541(2022), art. No. 116028. doi: 10.1016/j.desal.2022.116028
      [6]
      B.Y. Gong, H.C. Yang, S.H. Wu, et al., Phase change material enhanced sustained and energy-efficient solar-thermal water desalination, Appl. Energy, 301(2021), art. No. 117463. doi: 10.1016/j.apenergy.2021.117463
      [7]
      S. Aghakhani, A. Ghaffarkhah, M. Arjmand, N. Karimi, and M. Afrand, Phase change materials: Agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings, J. Build. Eng., 56(2022), art. No. 104656. doi: 10.1016/j.jobe.2022.104656
      [8]
      S.R.L. da Cunha and J.L.B. de Aguiar, Phase change materials and energy efficiency of buildings: A review of knowledge, J. Energy Storage, 27(2020), art. No. 101083. doi: 10.1016/j.est.2019.101083
      [9]
      Q.R. Zhang, T.T. Xue, J. Tian, Y. Yang, W. Fan, and T.X. Liu, Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation, Compos. Sci. Technol., 226(2022), art. No. 109541. doi: 10.1016/j.compscitech.2022.109541
      [10]
      K.Y. Sun, H.S. Dong, Y. Kou, et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications, Chem. Eng. J., 419(2021), art. No. 129637. doi: 10.1016/j.cej.2021.129637
      [11]
      Y. Lu, X.D. Xiao, J. Fu, et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning, Chem. Eng. J., 355(2019), p. 532. doi: 10.1016/j.cej.2018.08.189
      [12]
      X.C. Wang, G.Y. Li, G. Hong, Q. Guo, and X.T. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Interfaces, 9(2017), No. 47, p. 41323. doi: 10.1021/acsami.7b13969
      [13]
      J. Luo, D.Q. Zou, Y.S. Wang, S. Wang, and L. Huang, Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review, Chem. Eng. J., 430(2022), art. No. 132741. doi: 10.1016/j.cej.2021.132741
      [14]
      J. Shon, H. Kim, and K. Lee, Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger, Appl. Energy, 113(2014), p. 680. doi: 10.1016/j.apenergy.2013.07.049
      [15]
      S. Gong, X.L. Li, M.J. Sheng, et al., High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47174. doi: 10.1021/acsami.1c15670
      [16]
      H. Nazir, M. Batool, F.J.B. Osorio, et al., Recent developments in phase change materials for energy storage applications: A review, Int. J. Heat Mass Transf., 129(2019), p. 491. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
      [17]
      D.C. Gao, Y.J. Sun, A.M. Fong, and X.B. Gu, Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review, Energy Storage Mater., 46(2022), p. 100. doi: 10.1016/j.ensm.2022.01.003
      [18]
      D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
      [19]
      C.C. Li, X.K. Peng, J.J. He, and J. Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1835. doi: 10.1007/s12613-023-2627-4
      [20]
      T.T. Qian, J.H. Li, X. Min, Y. Deng, W.M. Guan, and L. Ning, Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material, Energy Convers. Manage., 98(2015), p. 34. doi: 10.1016/j.enconman.2015.03.071
      [21]
      M. Li and Z.S. Wu, A review of intercalation composite phase change material: Preparation, structure and properties, Renewable Sustainable Energy Rev., 16(2012), No. 4, p. 2094. doi: 10.1016/j.rser.2012.01.016
      [22]
      P.Z. Lv, C.Z. Liu, and Z.H. Rao, Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications, Renewable Sustainable Energy Rev., 68(2017), p. 707. doi: 10.1016/j.rser.2016.10.014
      [23]
      M. Li, Z.S. Wu, H.T. Kao, and J.M. Tan, Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material, Energy Convers. Manage., 52(2011), No. 11, p. 3275. doi: 10.1016/j.enconman.2011.05.015
      [24]
      J. Giro-Paloma, M. Martínez, L.F. Cabeza, and A. Inés Fernández, Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review, Renewable Sustainable Energy Rev., 53(2016), p. 1059.
      [25]
      G. Alva, Y.X. Lin, L.K. Liu, and G.Y. Fang, Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review, Energy Build., 144(2017), p. 276. doi: 10.1016/j.enbuild.2017.03.063
      [26]
      H. Yi, W.Q. Zhan, Y.L. Zhao, et al., A novel core–shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties, Sol. Energy Mater. Sol. Cells, 192(2019), p. 57. doi: 10.1016/j.solmat.2018.12.015
      [27]
      Z. Sun, L.J. Zhao, H.X. Wan, H. Liu, D.Z. Wu, and X.D. Wang, Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors, Chem. Eng. J., 396(2020), art. No. 125317. doi: 10.1016/j.cej.2020.125317
      [28]
      Z. Zhang, Z. Zhang, T. Chang, J. Wang, X. Wang, and G.F. Zhou, Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization, Chem. Eng. J., 428(2022), art. No. 131164. doi: 10.1016/j.cej.2021.131164
      [29]
      P. Liu, X. Chen, Y. Li, et al., Aerogels meet phase change materials: Fundamentals, advances, and beyond, ACS Nano, 16(2022), No. 10, p. 15586. doi: 10.1021/acsnano.2c05067
      [30]
      S. Kashyap, S. Kabra, and B. Kandasubramanian, Graphene aerogel-based phase changing composites for thermal energy storage systems, J. Mater. Sci., 55(2020), No. 10, p. 4127. doi: 10.1007/s10853-019-04325-7
      [31]
      H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233. doi: 10.1016/j.solmat.2019.110233
      [32]
      H.Z. Hong, Y. Pan, H.X. Sun, et al., Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 174(2018), p. 307. doi: 10.1016/j.solmat.2017.09.026
      [33]
      M. Cheng, J. Hu, J.Q. Xia, et al., One-step in situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material, Chem. Eng. J., 431(2022), art. No. 133935. doi: 10.1016/j.cej.2021.133935
      [34]
      Q.J. Guo, Q. An, H. Yi, F.F. Jia, and S.X. Song, Double-layered montmorillonite/MoS2 aerogel with vertical channel for efficient and stable solar interfacial desalination, Appl. Clay Sci., 217(2022), art. No. 106389. doi: 10.1016/j.clay.2021.106389
      [35]
      D.Y. Liu, C.X. Lei, K. Wu, and Q. Fu, A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion, ACS Nano, 14(2020), No. 11, p. 15738. doi: 10.1021/acsnano.0c06680
      [36]
      R.I. Iliescu, E. Andronescu, C.D. Ghitulica, G. Voicu, A. Ficai, and M. Hoteteu, Montmorillonite-alginate nanocomposite as a drug delivery system: Incorporation and in vitro release of irinotecan, Int. J. Pharm., 463(2014), No. 2, p. 184. doi: 10.1016/j.ijpharm.2013.08.043
      [37]
      A. Olad, M. Pourkhiyabi, H. Gharekhani, and F. Doustdar, Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: Reaction parameters and swelling characteristics, Carbohydr. Polym., 190(2018), p. 295. doi: 10.1016/j.carbpol.2018.02.088
      [38]
      H. Yi, L. Xia, and S.X. Song, Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage, Compos. Sci. Technol., 217(2022), art. No. 109121. doi: 10.1016/j.compscitech.2021.109121
      [39]
      Q.J. Guo, H. Yi, F.F. Jia, and S.X. Song, Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators, Renewable Energy, 194(2022), p. 68. doi: 10.1016/j.renene.2022.05.051
      [40]
      E.R. Kenawy, M.M. Azaam, and E.M. El-nshar, Sodium alginate-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate)/montmorillonite superabsorbent composite: Preparation, swelling investigation and its application as a slow-release fertilizer, Arab. J. Chem., 12(2019), No. 6, p. 847. doi: 10.1016/j.arabjc.2017.10.013
      [41]
      E. Tao, D. Ma, S.Y. Yang, and X. Hao, Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater, J. Alloys Compd., 832(2020), art. No. 154833. doi: 10.1016/j.jallcom.2020.154833
      [42]
      W. Wang, C.Y. Zhang, J.Y. He, et al., Chitosan-induced self-assembly of montmorillonite nanosheets along the end-face for methylene blue removal from water, Int. J. Biol. Macromol., 227(2023), p. 952. doi: 10.1016/j.ijbiomac.2022.12.206
      [43]
      W. Wang, T. Wen, and H.Y. Bai, , Adsorption toward Cu(II) and inhibitory effect on bacterial growth occurring on molybdenum disulfide-montmorillonite hydrogel surface, Chemosphere, 248(2020), art. No. 126025. doi: 10.1016/j.chemosphere.2020.126025
      [44]
      Y. Zhou, X.D. Liu, D.K. Sheng, et al., Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage, Chem. Eng. J., 338(2018), p. 117. doi: 10.1016/j.cej.2018.01.021
      [45]
      Y. Zhou, D.K. Sheng, X.D. Liu, et al., Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid–solid phase change materials, Sol. Energy Mater. Sol. Cells, 174(2018), p. 84. doi: 10.1016/j.solmat.2017.08.031
      [46]
      H.H. Liao, W.H. Chen, Y. Liu, and Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability, Compos. Sci. Technol., 189(2020), art. No. 108010. doi: 10.1016/j.compscitech.2020.108010
      [47]
      T.T. Qian, J.H. Li, X. Min, W.M. Guan, Y. Deng, and L. Ning, Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage, J. Mater. Chem. A, 3(2015), No. 16, p. 8526. doi: 10.1039/C5TA00309A
      [48]
      X. Chen, H.Y. Gao, M. Yang, et al., Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting, Nano Energy, 49(2018), p. 86. doi: 10.1016/j.nanoen.2018.03.075
      [49]
      S.Y. Yu, X.D. Wang, and D.Z. Wu, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation, Appl. Energy, 114(2014), p. 632. doi: 10.1016/j.apenergy.2013.10.029
      [50]
      S.Y. Liu and H.M. Yang, Stearic acid hybridizing coal–series Kaolin composite phase change material for thermal energy storage, Appl. Clay Sci., 101(2014), p. 277. doi: 10.1016/j.clay.2014.09.002
      [51]
      J.M.Gao, S.J. Ma, B. Wang, Z.B. Ma, Y.X. Guo, and F.Q. Cheng, Template-free facile preparation of mesoporous silica from fly ash for shaped composite phase change materials, J. Cleaner Prod., 384 (2023), art. No. 135583. doi: 10.1016/j.jclepro.2022.135583
      [52]
      Y. Wang, Y.H. Song, S. Li, T. Zhang, D.Y. Zhang, and P.R. Guo, Thermophysical properties of three-dimensional palygorskite based composite phase change materials, Appl. Clay Sci., 184(2020), art. No. 105367. doi: 10.1016/j.clay.2019.105367
      [53]
      H.T. Wei, X.Z. Xie, X.Q. Li, and X.S. Lin, Preparation and characterization of capric–myristic–stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material, Appl. Energy, 178(2016), p. 616. doi: 10.1016/j.apenergy.2016.06.109
      [54]
      Y.F. Zhao, W.X. Kong, Z.L. Jin, et al., Storing solar energy within Ag–paraffin@Halloysite microspheres as a novel self-heating catalyst, Appl. Energy, 222(2018), p. 180. doi: 10.1016/j.apenergy.2018.04.013
      [55]
      C.J. Han, H.Z. Gu, M.J. Zhang, A. Huang, Y. Zhang, and Y. Wang, Al–Si@Al2O3@mullite microcapsules for thermal energy storage: Preparation and thermal properties, Sol. Energy Mater. Sol. Cells, 217(2020), art. No. 110697. doi: 10.1016/j.solmat.2020.110697
      [56]
      H. Yi, W.Q. Zhan, Y.L. Zhao, et al., Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances: Effect of shell thickness, Sol. Energy Mater. Sol. Cells, 200(2019), art. No. 109935. doi: 10.1016/j.solmat.2019.109935
      [57]
      A.M. Turan and Y. Konuklu, Developing of capric acid@colemanite doped melamine formaldehyde microcapsules and composites as novel thermal energy storage materials, Therm. Sci. Eng. Prog., 41(2023), art. No. 101806. doi: 10.1016/j.tsep.2023.101806
      [58]
      L.Q. Wang, W.D. Liang, Y. Liu, et al., Carbonized clay pectin-based aerogel for light-to-heat conversion and energy storage, Appl. Clay Sci., 224 (2022), art. No. 106524. doi: 10.1016/j.clay.2022.106524
      [59]
      J.H. Zhu, Q. An, Q.J. Guo, H. Yi, L. Xia, and S.X. Song, Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management, Appl. Clay Sci., 223(2022), art. No. 106511. doi: 10.1016/j.clay.2022.106511
      [60]
      J.R. Li, L.H. He, T.Z. Liu, X.J. Cao, and H.Z. Zhu, Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 118(2013), p. 48. doi: 10.1016/j.solmat.2013.07.017
      [61]
      B.M. Li, D. Shu, R.F. Wang, et al., Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage, Renewable Energy, 145(2020), p. 84. doi: 10.1016/j.renene.2019.05.118
      [62]
      R.M. Nair, B. Bindhu, and V.L. Reena, A polymer blend from Gum Arabic and sodium alginate-preparation and characterization, J. Polym. Res., 27(2020), No. 6, art. No. 154. doi: 10.1007/s10965-020-02128-y
      [63]
      T.M.M. Swamy, B. Ramaraj, and Siddaramaiah, Sodium alginate and poly(ethylene glycol) blends: Thermal and morphological behaviors, J. Macromol. Sci. Part A, 47(2010), No. 9, p. 877. doi: 10.1080/10601325.2010.501296

    Catalog


    • /

      返回文章
      返回