留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  204
  • HTML全文浏览量:  89
  • PDF下载量:  22
  • 被引次数: 0
Rong Zhu, Yonggang Yang, Baozhong Zhang, Borui Zhang, Lei Li, Yanxin Wu, and Zhenli Mi, Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2796-1
Cite this article as:
Rong Zhu, Yonggang Yang, Baozhong Zhang, Borui Zhang, Lei Li, Yanxin Wu, and Zhenli Mi, Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2796-1
引用本文 PDF XML SpringerLink

添加Cr和Si元素对热成形钢力学性能和抗氧化性能的影响


文章亮点

  • (1) 阐明了Cr和Si含量的提高对热成形钢组织及力学性能的影响。
  • (2) 系统地研究了Cr和Si含量的提高对热成形钢氧化层结构的影响规律。
  • (3) 揭示了兼顾力学性能及抗氧化性能热成形钢的高温氧化机理。
  • 热成形钢因其超高强度、高尺寸精度和低回弹等优点,被广泛应用在车身结构件上。然而,热成形钢在热冲压成形的转移过程中会出现表面氧化的问题,虽然通过Al–Si涂层和Zn基镀层可以减少氧化,但是存在降低弯曲断裂应变、高成本和液态金属脆化开裂等问题。本文在传统22MnB5钢的成分基础上添加Cr和Si元素,保证力学性能满足要求的前提下,实现热成形钢抗高温氧化性能的大幅提升。借助拉伸试验机研究Cr–Si合金热成形钢和22MnB5钢在热成形后的力学性能,并通过扫描电镜、透射电镜和X射线衍射仪对两种热成形钢的表面氧化层形貌、相组成和截面氧化层形貌进行探究。结果表明,Cr–Si合金热成形钢的组织由板条马氏体、M23C6碳化物和残余奥氏体组成。残余奥氏体和碳化物是热成形钢延伸率提高的原因。此外,在930°C氧化5 min后,Cr–Si合金热成形钢的氧化层厚度小于5 μm,远低于22MnB5的氧化层厚度(约45.50 μm)。Cr–Si合金热成形钢的氧化层由Fe2O3、Fe3O4、FeCr2O4和Fe2SiO4的混合尖晶石氧化层、无定形SiO2组成。添加Cr和Si元素可以显著减少氧化层的厚度,并防止FeO相的生成。内氧化层中FeCr2O4和Fe2SiO4尖晶石氧化层占比的提高和靠近基体的无定形SiO2的生成有利于Cr–Si合金热成形钢抗氧化性能的提升。
  • Research Article

    Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si

    + Author Affiliations
    • This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel. Results indicated that the microstructure of the Cr–Si micro-alloyed press hardened steel consisted of lath martensite, M23C6 carbides, and retained austenite. The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel. In addition, after oxidation at 930°C for 5 min, the thickness of the oxide scales on the Cr–Si micro-alloyed press hardened steel is less than 5 μm, much thinner than 45.50 μm-thick oxide scales on 22MnB5. The oxide scales of the Cr–Si micro-alloyed steel are composed of Fe2O3, Fe3O4, mixed spinel oxide (FeCr2O4 and Fe2SiO4), and amorphous SiO2. Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase. Due to the increase of spinel FeCr2O4 and Fe2SiO4 phase in the inner oxide scale and the amorphous SiO2 close to the substrate, the oxidation resistance of the Cr–Si micro-alloyed press hardened steel is improved.
    • loading
    • [1]
      K. Mori, P.F. Bariani, B.A. Behrens, et al., Hot stamping of ultra-high strength steel parts, CIRP Ann., 66(2017), No. 2, p. 755. doi: 10.1016/j.cirp.2017.05.007
      [2]
      J.T. Liang, H.Z. Lu, L.L. Zhang, et al., A 2000 MPa grade Nb bearing hot stamping steel with ultra-high yield strength, Mat. Sci. Eng. A, 801(2021), art. No. 140419. doi: 10.1016/j.msea.2020.140419
      [3]
      Y.G. Yang, Z.L. Mi, H.T. Jiang, et al., Effects of the austenitizing temperature on the microstructure and mechanical properties in multiple-phase medium Mn steel, Mater. Res. Express, 6(2020), No. 12, art. No. 1265c9. doi: 10.1088/2053-1591/ab61af
      [4]
      S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
      [5]
      J. Hu, J.M. Zhang, G.S. Sun, et al., High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing, J. Mater. Sci., 54(2019), No. 8, p. 6565. doi: 10.1007/s10853-018-03291-w
      [6]
      J. Hu, L.X. Du, W. Xu, et al., Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite, Mater. Charact., 136(2018), p. 20. doi: 10.1016/j.matchar.2017.11.058
      [7]
      Y. Chang, X.D. Li, K.M. Zhao, et al., Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts, Mater. Sci. Eng. A, 629(2015), p. 1. doi: 10.1016/j.msea.2015.01.056
      [8]
      H.L. Yi, Z.Y. Chang, H.L. Cai, P.J. Du, and P.D. Yang, Strength, ductility and fracture strain of press-hardening steels, Acta Metall. Sin., 56(2020), No. 4, p. 429.
      [9]
      L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
      [10]
      X.L. Yu, Z.Y. Jiang, J.W. Zhao, et al., Local strain analysis of the tertiary oxide scale formed on a hot-rolled steel strip via EBSD, Surf. Coat. Technol., 277(2015), p. 151. doi: 10.1016/j.surfcoat.2015.07.037
      [11]
      J. Wang, W. Yu, E.T. Dong, and J.X. Shi, Evolution of oxide structures of low-alloy steel surface during short-time oxidation at high temperature, [in] Advances in Materials Processing : Proceedings of Chinese Materials Conference 2017 18th, Yinchuan, 2018, p. 725.
      [12]
      C. Wang, H.B. Wu, Z.C. Li, P.C. Zhang, and L.L. Li, Microtexture and rolling deformation behavior analysis of the formation mechanism Fe3O4 at the interface formed on hot-rolled high-strength steel, Metals, 11(2021), No. 2, art. No. 312. doi: 10.3390/met11020312
      [13]
      Y.B. Zhang, D.N. Zou, X.Q. Wang, Q.S. Wang, R. Xu, and W. Zhang, Influences of Si content on the high-temperature oxidation behavior of X10CrAlSi18 ferritic heat-resistant stainless steel at 700°C and 800°C, Surf. Coat. Technol., 422(2021), art. No. 127523. doi: 10.1016/j.surfcoat.2021.127523
      [14]
      M.H. Su, J.H. Zhao, Z.H. Tian, and C. Gu, Short-term oxidation behavior of 304 stainless steel in N2-21vol%O2 environment between 900 and 1200°C, Corros. Sci., 208(2022), art. No. 110612. doi: 10.1016/j.corsci.2022.110612
      [15]
      S.R. Kim, S. Lee, H.G. Kang, and J.W. Park, Oxide scale on stainless steels and its effect on sticking during hot-rolling, Corros. Sci., 164(2020), art. No. 108357. doi: 10.1016/j.corsci.2019.108357
      [16]
      Z. Shen, K. Chen, H.B. Yu, et al., New insights into the oxidation mechanisms of a ferritic–martensitic steel in high-temperature steam, Acta Mater., 194(2020), p. 522. doi: 10.1016/j.actamat.2020.05.052
      [17]
      M. Windmann, A. Röttger, and W. Theisen, Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating, Surf. Coat. Technol., 226(2013), p. 130. doi: 10.1016/j.surfcoat.2013.03.045
      [18]
      T. Taylor and A. Clough, Critical review of automotive hot-stamped sheet steel from an industrial perspective, Mater. Sci. Technol., 34(2018), No. 7, p. 809. doi: 10.1080/02670836.2018.1425239
      [19]
      Z.B. Dai, H. Chen, R. Ding, et al., Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite, Mater. Sci. Eng.: R: Rep., 143(2021), art. No. 100590. doi: 10.1016/j.mser.2020.100590
      [20]
      D. Bhattacharya, L. Cho, D. Marshall, et al., Liquid metal embrittlement susceptibility of two Zn-coated advanced high strength steels of similar strengths, Mater. Sci. Eng. A, 823(2021), art. No. 141569. doi: 10.1016/j.msea.2021.141569
      [21]
      Z.R. Hou, J.Y. Min, J.F. Wang, et al., Effect of rapid heating on microstructure and tensile properties of a novel coating-free oxidation-resistant press-hardening steel, JOM, 73(2021), No. 11, p. 3195. doi: 10.1007/s11837-021-04877-7
      [22]
      Z.R. Hou, J.F. Wang, Q. Lu, et al., Short process hot forming technology and microstructure evolution of ultra-high strength steels, J. Mech. Eng., 58(2022), No. 16, p. 43. doi: 10.3901/JME.2022.16.043
      [23]
      Y. Zhao, D.C. Yang, Z. Qin, X.H. Chu, J.H. Liu, and Z.Z. Zhao, A novel hot stamping steel with superior mechanical properties and antioxidant properties, J. Mater. Res. Technol., 21(2022), p. 1944. doi: 10.1016/j.jmrt.2022.10.017
      [24]
      W. Carl, Formation of composite scales consisting of oxides of different metals, J. Electrochem. Soc., 103(1956), No. 11, art. No. 627. doi: 10.1149/1.2430176
      [25]
      T. Fukagawa, H. Okada, and Y. Maehara, Mechanism of red scale defect formation in Si-added hot-rolled steel sheets, ISIJ Int., 34(1994), No. 11, p. 906. doi: 10.2355/isijinternational.34.906
      [26]
      A. Col, V. Parry, and C. Pascal, Oxidation of a Fe–18Cr–8Ni austenitic stainless steel at 850°C in O2: Microstructure evolution during breakaway oxidation, Corros. Sci., 114(2017), p. 17. doi: 10.1016/j.corsci.2016.10.029
      [27]
      D. Singh, F. Cemin, M.J.M. Jimenez, et al., High-temperature oxidation behaviour of nanostructure surface layered austenitic stainless steel, Appl. Surf. Sci., 581(2022), art. No. 152437. doi: 10.1016/j.apsusc.2022.152437
      [28]
      R. Zhu, M. Wang, Z.L. Mi, et al., Effects of nano-ceramic additives on high-temperature mechanical properties and corrosion behavior of 310S austenitic stainless steel, J. Iron Steel Res. Int., 30(2023), No. 3, p. 591. doi: 10.1007/s42243-022-00828-x
      [29]
      Q. Yuan, G. Xu, M.X. Zhou, and B. He, The effect of the Si content on the morphology and amount of Fe2SiO4 in low carbon steels, Metals, 6(2016), No. 4, art. No. 94. doi: 10.3390/met6040094
      [30]
      S. Wang, Y. Wu, F. Gesmundo, and Y. Niu, The effect of Si additions on the high-temperature oxidation of a ternary Ni–10Cr–4Al alloy in 1 atm O2 at 900–1000°C, Oxid. Met., 69(2008), No. 5, p. 299.
      [31]
      Z.S. Chai, L.Y. Wang, Z. Wang, et al., Cr-enriched carbide induced stabilization of austenite to improve the ductility of a 1.7 GPa–press-hardened steel, Scr. Mater., 224(2023), art. No. 115108. doi: 10.1016/j.scriptamat.2022.115108
      [32]
      J. Hu, L.X. Du, Y. Dong, Q.W. Meng, and R.D.K. Misra, Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel, Mater. Charact., 152(2019), p. 21. doi: 10.1016/j.matchar.2019.04.004
      [33]
      Y. Liu, Y.H. Sun, and H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011. doi: 10.1007/s12613-020-2092-2
      [34]
      H.W. Luo, X.H. Wang, Z.B. Liu, and Z.Y. Yang, Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel, J. Mater. Sci. Technol., 51(2020), p. 130. doi: 10.1016/j.jmst.2020.04.001
      [35]
      Z.R. Hou, T. Opitz, X.C. Xiong, X.M. Zhao, and H.L. Yi, Bake-partitioning in a press-hardening steel, Scr. Mater., 162(2019), p. 492. doi: 10.1016/j.scriptamat.2018.10.053
      [36]
      H.P. Liu, X.W. Lu, X.J. Jin, H. Dong, and J. Shi, Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process, Scr. Mater., 64(2011), No. 8, p. 749. doi: 10.1016/j.scriptamat.2010.12.037
      [37]
      L. Liu, B.B. He, and M.X. Huang, The role of transformation-induced plasticity in the development of advanced high strength steels, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1701083. doi: 10.1002/adem.201701083
      [38]
      J. Hu, X.Y. Li, Q.W. Meng, L.Y. Wang, Y.Z. Li, and W. Xu, Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct intercritical rolling, Mater. Sci. Eng. A, 855(2022), art. No. 143904. doi: 10.1016/j.msea.2022.143904
      [39]
      X.J. Jin, S.H. Chen, and L.J. Rong, Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel, J. Nucl. Mater., 494(2017), p. 103. doi: 10.1016/j.jnucmat.2017.07.024
      [40]
      S.C. Zhang, H.B. Li, Z.H. Jiang, et al., Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654, J. Mater. Sci. Technol., 115(2022), p. 103. doi: 10.1016/j.jmst.2022.01.001
      [41]
      H.L. Zhao, L.F. Li, and Q. Feng, Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 814. doi: 10.1007/s12613-021-2314-2
      [42]
      J. Wang, S.P. Lu, L.J. Rong, D.Z. Li, and Y.Y. Li, Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550°C lead-bismuth eutectic, Corros. Sci., 111(2016), p. 13. doi: 10.1016/j.corsci.2016.04.020
      [43]
      Z.Y. Xu, L.L. Song, Y.Y. Zhao, and S.J. Liu, The formation mechanism and effect of amorphous SiO2 on the corrosion behaviour of Fe–Cr–Si ODS alloy in LBE at 550°C, Corros. Sci., 190(2021), art. No. 109634. doi: 10.1016/j.corsci.2021.109634
      [44]
      L.L. Zhang, W. Yan, Q.Q. Shi, Y.F. Li, Y.Y. Shan, and K. Yang, Silicon enhances high temperature oxidation resistance of SIMP steel at 700°C, Corros. Sci., 167(2020), art. No. 108519. doi: 10.1016/j.corsci.2020.108519
      [45]
      J. Issartel, S. Martoia, F. Charlot, et al., High temperature behavior of the metal/oxide interface of ferritic stainless steels, Corros. Sci., 59(2012), p. 148. doi: 10.1016/j.corsci.2012.02.025
      [46]
      G.H. Meier, K. Jung, N. Mu, et al., Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe–Cr and Fe–Cr–X alloys, Oxid. Met., 74(2010), No. 5, p. 319.
      [47]
      A. Atkinson and J.W. Gardner, The diffusion of Fe3+ in amorphous SiO2 and the protective properties of SiO2 layers, Corros. Sci., 21(1981), No. 1, p. 49. doi: 10.1016/0010-938X(81)90063-9
      [48]
      A.C.S. Sabioni, A.M. Huntz, F. Silva, and F. Jomard, Diffusion of iron in Cr2O3: Polycrystals and thin films, Mater. Sci. Eng. A, 392(2005), No. 1-2, p. 254. doi: 10.1016/j.msea.2004.09.033
      [49]
      B. Li and B. Gleeson, Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys, Oxid. Met., 65(2006), No. 1, p. 101.
      [50]
      L. Shen, Y.N. Wang, T.F. Jing, H.B. Peng, and Y.H. Wen, Oxidation resistance and mechanical properties of Al2O3-forming and SiO2-forming austenitic stainless steels between 1023 K and 1173 K, Corros. Sci., 211(2023), art. No. 110914. doi: 10.1016/j.corsci.2022.110914
      [51]
      R. Bauer, M. Baccalaro, L.P.H. Jeurgens, M. Pohl, and E.J. Mittemeijer, Oxidation behavior of Fe–25Cr–20Ni–2.8Si during isothermal oxidation at 1286K; life-time prediction, Oxid. Met., 69(2008), No. 3, p. 265.
      [52]
      W.B. Du, C.J. Liu, and Y.Y. Yue, Effect of passivation on the high-temperature oxidation behavior of hot-formed steel, Corros. Sci., 202(2022), art. No. 110318. doi: 10.1016/j.corsci.2022.110318
      [53]
      S. Zhang, Y.L. Zhang, and S.W Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1207. doi: 10.1007/s12613-022-2489-1
      [54]
      Z.X. Shi, S.Z. Liu, M. Han, and J.R. Li, Influence of yttrium addition on high temperature oxidation resistance of single crystal superalloy, J. Rare Earths, 31(2013), No. 8, p. 795. doi: 10.1016/S1002-0721(12)60360-3
      [55]
      Y.F. Zhang, D.M. Zhu, and D.A. Shores, Effect of yttrium on the oxidation behavior of cast Ni–30Cr alloy, Acta Metall. Mater., 43(1995), No. 11, p. 4015. doi: 10.1016/0956-7151(95)00093-B

    Catalog


    • /

      返回文章
      返回