留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  497
  • HTML全文浏览量:  159
  • PDF下载量:  24
  • 被引次数: 0
S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, M.S. Soheilirad, F. Khorashadizade,  and S.S. Mirhosseini, MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2062-2076. https://doi.org/10.1007/s12613-023-2797-0
Cite this article as:
S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, M.S. Soheilirad, F. Khorashadizade,  and S.S. Mirhosseini, MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2062-2076. https://doi.org/10.1007/s12613-023-2797-0
引用本文 PDF XML SpringerLink
研究论文

具有优异力学、腐蚀和生物性能的氧化镁附着石墨烯纳米片(MgO@GNS)增强镁基纳米复合材料


  • 通讯作者:

    A. Shamsipur    E-mail: shamsipur@aut.ac.ir

    H.R. Bakhsheshi-Rad    E-mail: rezabakhsheshi@gmail.com

  • 镁合金具有良好的生物可降解性和生物相容性,因此作为人体植入材料越来越受重视。然而,镁合金的耐蚀性和抗菌活性较低。本研究采用半粉末冶金法和热挤压法制备氧化镁@石墨烯纳米片/镁(MgO@GNS/Mg)复合材料,以改善其力学、耐腐蚀和细胞相容性等特性。研究发现,MgO@GNS纳米复合物加入镁基复合材料中可提高显微硬度和抗压强度。体外成骨细胞培养试验表明, MgO@GNS 纳米复合填可增强成骨细胞的粘附性和磷灰石矿化。MgO@GNS纳米粒子的存在减少了复合材料的开口缺陷、微裂缝和微孔,从而可有效阻止腐蚀溶液对基体渗透。研究表明,MgO@GNS/Mg复合材料具有优异的抗菌性能,这归因于MgO的活性氧释放和石墨烯纳米片锋利边缘对细菌膜的物理破坏从而促进对细菌脂质双分子层的渗透。因此,具有高强度、抗菌活性和耐蚀性的 MgO@GNS/Mg 复合材料被认为是一种很有前景的承重植入材料。
  • Research Article

    MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance

    + Author Affiliations
    • Magnesium (Mg) alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility. However, they suffer from low corrosion resistance and antibacterial activity. In this research, semi-powder metallurgy followed by hot extrusion was utilized to produce the magnesium oxide@graphene nanosheets/magnesium (MgO@GNS/Mg) composite to improve mechanical, corrosion and cytocompatibility characteristics. Investigations have revealed that the incorporation of MgO@GNS nanohybrids into Mg-based composite enhanced microhardness and compressive strength. In vitro, osteoblast cell culture tests show that using MgO@GNS nanohybrid fillers enhances osteoblast adhesion and apatite mineralization. The presence of MgO@GNS nanoparticles in the composites decreased the opening defects, micro-cracks and micro-pores of the composites thus preventing the penetration of the corrosive solution into the matrix. Studies demonstrated that the MgO@GNS/Mg composite possesses excellent antibacterial properties because of the combination of the release of MgO and physical damage to bacterium membranes caused by the sharp edges of graphene nanosheets that can effectively damage the cell wall thereby facilitating penetration into the bacterial lipid bilayer. Therefore, the MgO@GNS/Mg composite with high mechanical strength, antibacterial activity and corrosion resistance is considered to be a promising material for load-bearing implant applications.
    • loading
    • [1]
      A. Senthil Kumar, A. Raja Durai, and T. Sornakumar, Machinability of hardened steel using alumina based ceramic cutting tools, Int. J. Refract. Met. Hard Mater., 21(2003), No. 3-4, p. 109. doi: 10.1016/S0263-4368(03)00004-0
      [2]
      R.B. Figueiredo and T.G. Langdon, Processing magnesium and its alloys by high-pressure torsion: An overview, Adv. Eng. Mater., 21(2019), No. 1, art. No.1801039. doi: 10.1002/adem.201801039
      [3]
      Q.M. Dai, D.F. Zhang, J.Y. Xu, B. Jiang, and F.S. Pan, Tensile mechanical properties and deformation mechanism of the extruded ZM61 magnesium alloy at high strain rates, Adv. Eng. Mater., 24(2022), No. 8, art. No. 2101554. doi: 10.1002/adem.202101554
      [4]
      S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, et al., Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review, Materials, 13(2020), No. 19, art. No. 4421. doi: 10.3390/ma13194421
      [5]
      J.D. Robson and M.R. Barnett, The effect of precipitates on twinning in magnesium alloys, Adv. Eng. Mater., 21(2019), No. 4, art. No. 1800460. doi: 10.1002/adem.201800460
      [6]
      D.R. Lopes, C.L.P. Silva, R.B. Soares, et al., Cytotoxicity and corrosion behavior of magnesium and magnesium alloys in hank’s solution after processing by high-pressure torsion, Adv. Eng. Mater., 21(2019), No. 8, art. No. 1900391. doi: 10.1002/adem.201900391
      [7]
      Y. Xu, X.X. Zhang, W. Li, et al., Mechanical response and microstructure evolution of a repetitive upsetting extrusion processed AZ61 magnesium alloy in semi-solid compression, Adv. Eng. Mater., 21(2019), No. 9, art. No. 1900362. doi: 10.1002/adem.201900362
      [8]
      H.Y. Li, Z.N. Qin, Y.Q. Ouyang, et al., Hydroxyapatite/chitosan-metformin composite coating enhances the biocompatibility and osteogenic activity of AZ31 magnesium alloy, J. Alloys Compd., 909(2022), art. No. 164694.
      [9]
      Z.K. Gao, W.C. Liu, G.H. Wu, et al., Effects of Al and Y addition on microstructures and mechanical properties of as-cast Mg–14Li based alloy, Adv. Eng. Mater., 21(2019), No. 2, art. No. 1800755. doi: 10.1002/adem.201800755
      [10]
      R. Del Campo, B. Savoini, L. Jordao, A. Muñoz, and M.A. Monge, Cytocompatibility, biofilm assembly and corrosion behavior of Mg–HAP composites processed by extrusion, Mater. Sci. Eng. C, 78(2017), p. 667. doi: 10.1016/j.msec.2017.04.143
      [11]
      M. Rashad, F.S. Pan, J.Y. Zhang, and M. Asif, Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy, J. Alloys Compd., 646(2015), p. 223. doi: 10.1016/j.jallcom.2015.06.051
      [12]
      T. Lei, W. Tang, S.H. Cai, F.F. Feng, and N.F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction, Corros. Sci., 54(2012), p. 270. doi: 10.1016/j.corsci.2011.09.027
      [13]
      S. Park, H. Lee, H.E. Kim, H.D. Jung, and T.S. Jang, Bifunctional poly (l-lactic acid)/hydrophobic silica nanocomposite layer coated on magnesium stents for enhancing corrosion resistance and endothelial cell responses, Mater. Sci. Eng. C, 127(2021), art. No. 112239. doi: 10.1016/j.msec.2021.112239
      [14]
      H. Lee, D.Y. Shin, Y. Na, et al., Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants, Biomater. Adv., 152(2023), art. No. 213523. doi: 10.1016/j.bioadv.2023.213523
      [15]
      J.X. Tao, M.C. Zhao, Y.C. Zhao, et al., Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30– xGO composites prepared by selective laser melting, J. Magnesium Alloys, 8(2020), No. 3, p. 952. doi: 10.1016/j.jma.2019.10.004
      [16]
      Y.F. Han, Y.B. Ke, Y. Shi, et al., Improved mechanical property of nanolaminated graphene (reduced graphene oxide)/Al–Mg–Si composite rendered by facilitated ageing process, Mater. Sci. Eng. A, 787(2020), art. No. 139541. doi: 10.1016/j.msea.2020.139541
      [17]
      C.J. Shuai, P. Feng, P. Wu, et al., A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds, Chem. Eng. J., 313(2017), p. 487. doi: 10.1016/j.cej.2016.11.095
      [18]
      S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, et al., Magnesium-based nanocomposites: A review from mechanical, creep and fatigue properties, J. Magnesium Alloys, 11(2023), No. 8, p. 2655. doi: 10.1016/j.jma.2023.08.005
      [19]
      S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, S. Ramakrishna, and F. Berto, Graphene family nanomaterial reinforced magnesium-based matrix composites for biomedical application: A comprehensive review, Metals, 10(2020), No. 8, art. No. 1002. doi: 10.3390/met10081002
      [20]
      T. Lei, C. Ouyang, W. Tang, L.F. Li, and L.S. Zhou, Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process, Corros. Sci., 52(2010), No. 10, p. 3504. doi: 10.1016/j.corsci.2010.06.028
      [21]
      C.S. Goh, M. Gupta, J. Wei, and L.C. Lee, Characterization of high performance Mg/MgO nanocomposites, J. Compos. Mater., 41(2007), No. 19, p. 2325. doi: 10.1177/0021998307075445
      [22]
      G.Y. Lin, D.D. Liu, M.F. Chen, et al., Preparation and characterization of biodegradable Mg–Zn–Ca/MgO nanocomposites for biomedical applications, Mater. Charact., 144(2018), p. 120. doi: 10.1016/j.matchar.2018.06.028
      [23]
      C.J. Shuai, Z.C. Zeng, Y.W. Yang, et al., Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue, Mater. Des., 190(2020), art. No. 108564. doi: 10.1016/j.matdes.2020.108564
      [24]
      X.Y. Sun, C.J. Li, X.B. Dai, et al., Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process, J. Alloys Compd., 835(2020), art. No. 155125. doi: 10.1016/j.jallcom.2020.155125
      [25]
      Y.M. Zhang, J.L. Sun, X.Z. Xiao, N. Wang, G.Z. Meng, and L. Gu, Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review, J. Mater. Sci. Technol., 129(2022), p. 139. doi: 10.1016/j.jmst.2022.04.032
      [26]
      Z.M. Sun, H.L. Shi, X.S. Hu, M.F. Yan, and X.J. Wang, Simultaneously enhanced mechanical properties and electromagnetic interference shielding performance of a graphene nanosheets (GNSs) reinforced magnesium matrix composite by GNSs induced laminated structure, J. Alloys Compd., 898(2022), art. No. 162847. doi: 10.1016/j.jallcom.2021.162847
      [27]
      V. Berry, Impermeability of graphene and its applications, Carbon, 62(2013), p. 1. doi: 10.1016/j.carbon.2013.05.052
      [28]
      H. Wang, C. Wei, K.Y. Zhu, et al., Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films, ACS Appl. Mater. Interfaces, 9(2017), No. 39, p. 34456. doi: 10.1021/acsami.7b09891
      [29]
      N. El Mahallawy, A. Ahmed Diaa, M. Akdesir, and H. Palkowski, Effect of Zn addition on the microstructure and mechanical properties of cast, rolled and extruded Mg–6Sn–xZn alloys, Mater. Sci. Eng. A, 680(2017), p. 47. doi: 10.1016/j.msea.2016.10.075
      [30]
      S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R Rep., 74(2013), No. 10, p. 281. doi: 10.1016/j.mser.2013.08.001
      [31]
      Z.X. Song, X.S. Hu, Y.Y. Xiang, K. Wu, and X.J. Wang, Enhanced mechanical properties of CNTs/Mg biomimetic laminated composites, Mater. Sci. Eng. A, 802(2021), art. No. 140632. doi: 10.1016/j.msea.2020.140632
      [32]
      R.F. Albers, R.A. Bini, J.B. Souza, D.T. Machado, and L.C. Varanda, A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials, Carbon, 143(2019), p. 73. doi: 10.1016/j.carbon.2018.10.087
      [33]
      A. Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand, Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets, Appl. Surf. Sci., 486(2019), p. 153. doi: 10.1016/j.apsusc.2019.05.026
      [34]
      C.D. Gao, P. Feng, S.P. Peng, and C.J. Shuai, Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair, Acta Biomater., 61(2017), p. 1. doi: 10.1016/j.actbio.2017.05.020
      [35]
      M. Rashad, F.S. Pan, A.T. Tang, M. Asif, and M. Aamir, Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloys Compd., 603(2014), p. 111. doi: 10.1016/j.jallcom.2014.03.038
      [36]
      M. Rashad, F.S. Pan, A.T. Tang, et al., Development of magnesium-graphene nanoplatelets composite, J. Compos. Mater., 49(2015), No. 3, p. 285. doi: 10.1177/0021998313518360
      [37]
      F. Hosseinbabaei and B. Raissidehkordi, Electrophoretic deposition of MgO thick films from an acetone suspension, J. Eur. Ceram. Soc., 20(2000), No. 12, p. 2165. doi: 10.1016/S0955-2219(00)00081-9
      [38]
      M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728. doi: 10.1016/j.biomaterials.2005.10.003
      [39]
      C. Blawert, W. Dietzel, E. Ghali, and G. Song, Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Adv. Eng. Mater., 8(2006), No. 6, p. 511. doi: 10.1002/adem.200500257
      [40]
      S. Petnikota, N.K. Rotte, M.V. Reddy, V.V.S.S. Srikanth, and B.V.R. Chowdari, MgO-decorated few-layered graphene as an anode for Li-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 4, p. 2301. doi: 10.1021/am5064712
      [41]
      A. Arshad, J. Iqbal, M. Siddiq, et al., Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites, J. Appl. Phys., 121(2017), No. 2, art. No. 024901. doi: 10.1063/1.4972970
      [42]
      C.J. Shuai, B. Wang, S.Z. Bin, S.P. Peng, and C.D. Gao, Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites, Mater. Des., 191(2020), art. No. 108612. doi: 10.1016/j.matdes.2020.108612
      [43]
      Y. Wang, Z. Fan, X. Zhou, and G.E. Thompson, Characterisation of magnesium oxide and its interface with α-Mg in Mg–Al-based alloys, Philos. Mag. Lett., 91(2011), No. 8, p. 516. doi: 10.1080/09500839.2011.591744
      [44]
      Q.H. Yuan, G.H. Zhou, L. Liao, Y. Liu, and L. Luo, Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets, Carbon, 127(2018), p. 177. doi: 10.1016/j.carbon.2017.10.090
      [45]
      J.T. Hou, W.B. Du, G. Parande, M. Gupta, and S. Li, Significantly enhancing the strength + ductility combination of Mg–9Al alloy using multi-walled carbon nanotubes, J. Alloys Compd., 790(2019), p. 974. doi: 10.1016/j.jallcom.2019.03.243
      [46]
      F.P. Du, H. Tang, and D.Y. Huang, Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes, Int. J. Polym. Sci., 2013(2013), art. No. 541823.
      [47]
      F.P. Du, K.B. Wu, Y.K. Yang, L. Liu, T. Gan, and X.L. Xie, Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes, Nanotechnology, 19(2008), No. 8, art. No. 085716. doi: 10.1088/0957-4484/19/8/085716
      [48]
      S. Abazari, A. Shamsipur, and H.R. Bakhsheshi-Rad, Reduced graphene oxide (RGO) reinforced Mg biocomposites for use as orthopedic applications: Mechanical properties, cytocompatibility and antibacterial activity, J. Magnesium Alloys, 10(2022), No. 12, p. 3612. doi: 10.1016/j.jma.2021.09.016
      [49]
      X.F. Chen, J.M. Tao, Y.C. Liu, et al., Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube-graphene hybrids, Carbon, 146(2019), p. 736. doi: 10.1016/j.carbon.2019.02.048
      [50]
      C.J. Shuai, B. Wang, Y.W. Yang, S.P. Peng, and C.D. Gao, 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties, Composites Part B, 162(2019), p. 611. doi: 10.1016/j.compositesb.2019.01.031
      [51]
      S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nüesch, and B.T.T. Chu, Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites, Carbon, 50(2012), No. 15, p. 5380. doi: 10.1016/j.carbon.2012.07.021
      [52]
      Z. Li, G.L. Fan, Q. Guo, Z.Q. Li, Y.S. Su, and D. Zhang, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites, Carbon, 95(2015), p. 419. doi: 10.1016/j.carbon.2015.08.014
      [53]
      C.J. Shuai, Y. Xu, P. Feng, Z.Y. Zhao, and Y.W. Deng, Hybridization of graphene oxide and mesoporous bioactive glass: Micro-space network structure enhance polymer scaffold, J. Mech. Behav. Biomed. Mater., 109(2020), art. No. 103827. doi: 10.1016/j.jmbbm.2020.103827
      [54]
      M. Shahin, Munir K., Wen C., and Y.C. Li, Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials, J. Alloys Compd., 828(2020), art. No. 154461. doi: 10.1016/j.jallcom.2020.154461
      [55]
      C.J. Shuai, T.T. Liu, C.D. Gao, et al., Mechanical and structural characterization of diopside scaffolds reinforced with graphene, J. Alloys Compd., 655(2016), p. 86. doi: 10.1016/j.jallcom.2015.09.134
      [56]
      H. Hegab, A. Elmekawy, L.D. Zou, D. Mulcahy, C. Saint, and M. Ginic-Markovic, The controversial antibacterial activity of graphene-based materials, Carbon, 105(2016), p.362. doi: 10.1016/j.carbon.2016.04.046
      [57]
      Z.J. Jia, Y.Y. Shi, P. Xiong, et al., From solution to biointerface: Graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation, ACS Appl. Mater. Interfaces, 8(2016), No. 27, p. 17151. doi: 10.1021/acsami.6b05198
      [58]
      M. Torabi Parizi, G.R. Ebrahimi, and H.R. Ezatpour, Effect of graphene nanoplatelets content on the microstructural and mechanical properties of AZ80 magnesium alloy, Mater. Sci. Eng. A, 742(2019), p. 373. doi: 10.1016/j.msea.2018.11.025
      [59]
      M. Torabi Parizi, H.R. Ezatpour, and G.R. Ebrahimi, High mechanical efficiency, microstructure evaluation and texture of rheo-casted and extruded AZ80–Ca alloy reinforced with processed Al2O3/GNPs hybrid reinforcement, Mater. Chem. Phys., 218(2018), p. 246. doi: 10.1016/j.matchemphys.2018.07.054
      [60]
      K.S. Munir, Y.C. Li, J.X. Lin, and C.E. Wen, Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites, Materialia, 3(2018), p. 122. doi: 10.1016/j.mtla.2018.08.015
      [61]
      M. Wang, Y. Zhao, L.D. Wang, et al., Achieving high strength and ductility in graphene/magnesium composite via an in situ reaction wetting process, Carbon, 139(2018), p. 954. doi: 10.1016/j.carbon.2018.08.009
      [62]
      C.J. Shuai, B. Wang, S.Z. Bin, S.P. Peng, and C.D. Gao, TiO2-induced in situ reaction in graphene oxide-reinforced AZ61 biocomposites to enhance the interfacial bonding, ACS Appl. Mater. Interfaces, 12(2020), No. 20, p. 23464. doi: 10.1021/acsami.0c04020
      [63]
      P. Nyanor, O. El-Kady, H.M. Yehia, A.S. Hamada, K. Nakamura, and M.A. Hassan, Effect of carbon nanotube (CNT) content on the hardness, wear resistance and thermal expansion of In-situ reduced graphene oxide (rGO)-reinforced aluminum matrix composites, Met. Mater. Int., 27(2021), No. 5, p. 1315. doi: 10.1007/s12540-019-00445-6
      [64]
      J.F. Wang, W.W. Wei, X.F. Huang, L. Li, and F.S. Pan, Preparation and properties of Mg–Cu–Mn–Zn–Y damping magnesium alloy, Mater. Sci. Eng. A, 528(2011), No. 21, p. 6484. doi: 10.1016/j.msea.2011.05.010
      [65]
      C.J. Shuai, J. Zan, F.W. Qi, et al., nMgO-incorporated PLLA bone scaffolds: Enhanced crystallinity and neutralized acidic products, Mater. Des., 174(2019), art. No. 107801. doi: 10.1016/j.matdes.2019.107801
      [66]
      Y.P. Ding, J.L. Xu, J.B. Hu, et al., High performance carbon nanotube-reinforced magnesium nanocomposite, Mater. Sci. Eng. A, 771(2020), art. No. 138575. doi: 10.1016/j.msea.2019.138575
      [67]
      P.B. Wang, J. Shen, T.J. Chen, Q.L. Li, X.A. Yue, and L.Y. Wang, Fabrication of graphene nanoplatelets reinforced Mg matrix composites via powder thixoforging, J. Magnesium. Alloys, 10(2022), No. 11, p. 3113. doi: 10.1016/j.jma.2021.03.032
      [68]
      Q.H. Yuan, X.S. Zeng, Y. Liu, et al., Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO, Carbon, 96(2016), p. 843. doi: 10.1016/j.carbon.2015.10.018
      [69]
      S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, and M.Y. Zheng, Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Sci. Rep., 6(2016), art. No. 38824. doi: 10.1038/srep38824
      [70]
      X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites, Mater. Sci. Eng. A, 711(2018), p. 633. doi: 10.1016/j.msea.2017.11.040
      [71]
      S. Ramezanzade, G.R. Ebrahimi, M. Torabi Parizi, and H.R. Ezatpour, Synergetic effect of GNPs and MgOs on the mechanical properties of Mg–Sr–Ca alloy, Mater. Sci. Eng. A, 761(2019), art. No. 138025. doi: 10.1016/j.msea.2019.138025
      [72]
      L. Zhang, W.W. Liu, C.G. Yue, et al., A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon, 61(2013), p. 105. doi: 10.1016/j.carbon.2013.04.074
      [73]
      Y.Y. Shi, M. Li, Q. Liu, et al., Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate, J. Mater. Sci. Mater. Med., 27(2016), No. 3, art. No. 48. doi: 10.1007/s10856-015-5634-9
      [74]
      F. Gao, C.Y. Xu, H.T. Hu, et al., Biomimetic synthesis and characterization of hydroxyapatite/graphene oxide hybrid coating on Mg alloy with enhanced corrosion resistance, Mater. Lett., 138(2015), p. 25. doi: 10.1016/j.matlet.2014.09.088
      [75]
      X.H. Sun, X. Yu, W. Li, M.F. Chen, and D.B. Liu, Mechanical properties, degradation behavior and cytocompatibility of biodegradable 3vol%X (X = MgO, ZnO and CuO)/Zn matrix composites with excellent dispersion property fabricated by graphene oxide-assisted hetero-aggregation, Biomater. Adv., 134(2022), art. No. 112722. doi: 10.1016/j.msec.2022.112722
      [76]
      N. Safari, N. Golafshan, M. Kharaziha, et al., Stable and antibacterial magnesium–graphene nanocomposite-based implants for bone repair, ACS Biomater. Sci. Eng., 6(2020), No. 11, p. 6253. doi: 10.1021/acsbiomaterials.0c00613
      [77]
      T.S.N. Sankara Narayanan, I.S. Park, and M.H. Lee, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges, Prog. Mater. Sci., 60(2014), p. 1. doi: 10.1016/j.pmatsci.2013.08.002
      [78]
      M.E. Orazem, N. Pébère, and B. Tribollet, Enhanced graphical representation of electrochemical impedance data, J. Electrochem. Soc., 153(2006), No. 4, art. No. B129. doi: 10.1149/1.2168377
      [79]
      W.C. Kim, J.G. Kim, J.Y. Lee, and H.K. Seok, Influence of Ca on the corrosion properties of magnesium for biomaterials, Mater. Lett., 62(2008), No. 25, p. 4146. doi: 10.1016/j.matlet.2008.06.028
      [80]
      G. Jena, B. Anandkumar, S.C. Vanithakumari, R.P. George, J. Philip, and G. Amarendra, Graphene oxide–chitosan–silver composite coating on Cu–Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications, Prog. Org. Coat., 139(2020), art. No. 105444. doi: 10.1016/j.porgcoat.2019.105444
      [81]
      B.K. Jiang, A.Y. Chen, J.F. Gu, et al., Corrosion resistance enhancement of magnesium alloy by N-doped graphene quantum dots and polymethyltrimethoxysilane composite coating, Carbon, 157(2020), p. 537. doi: 10.1016/j.carbon.2019.09.013
      [82]
      P. Feng, P. Wu, C.D. Gao, et al., A multimaterial scaffold with tunable properties: Toward bone tissue repair, Adv. Sci., 5(2018), No. 6, art. No. 1700817. doi: 10.1002/advs.201700817
      [83]
      H.R. Bakhsheshi-Rad, A.F. Ismail, M. Aziz, et al., Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants, Mater. Sci. Eng. C, 111(2020), art. No. 110812. doi: 10.1016/j.msec.2020.110812
      [84]
      S. Panda, T.K. Rout, A.D. Prusty, P.M. Ajayan, and S. Nayak, Electron transfer directed antibacterial properties of graphene oxide on metals, Adv. Mater., 30(2018), No. 7, art. No. 1702149. doi: 10.1002/adma.201702149
      [85]
      G.W. Qian, L.M. Zhang, Y. Shuai, et al., 3D-printed CuFe2O4–MXene/PLLA antibacterial tracheal scaffold against implantation-associated infection, Appl. Surf. Sci., 614(2022), No. 3, art. No.156108.
      [86]
      S. Abazari, A. Shamsipur, and H.R. Bakhsheshi-Rad, Synergistic effect of hybrid reduced graphene oxide (rGO) and carbon nanotubes (CNTs) reinforcement on microstructure, mechanical and biological properties of magnesium-based composite, Mater. Chem. Phys., 301(2023), art. No. 127543. doi: 10.1016/j.matchemphys.2023.127543
      [87]
      S. Liu, T.H. Zeng, M. Hofmann, et al., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress, ACS Nano, 5(2011), No. 9, p. 6971. doi: 10.1021/nn202451x
      [88]
      X.F. Zou, L. Zhang, Z.J. Wang, and Y. Luo, Mechanisms of the antimicrobial activities of graphene materials, J. Am. Chem. Soc., 138(2016), No. 7, p. 2064. doi: 10.1021/jacs.5b11411
      [89]
      J. Zhao, Z.Y. Wang, J.C. White, and B.S. Xing, Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol., 48(2014), No. 17, p. 9995. doi: 10.1021/es5022679
      [90]
      S.B. Liu, L. Wei, L. Hao, et al., Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3(2009), No. 12, p. 3891. doi: 10.1021/nn901252r
      [91]
      D. Wang, C. Ma, J.Y. Liu, et al., Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1128. doi: 10.1007/s12613-023-2596-7
      [92]
      M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 168. doi: 10.1007/s12613-020-2072-6
      [93]
      H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1278. doi: 10.1007/s12613-022-2589-y
      [94]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [95]
      S. Jabbarzare, H.R. Bakhsheshi-Rad, A.A. Nourbakhsh, T. Ahmadi, and F. Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 305. doi: 10.1007/s12613-020-2201-2
      [96]
      Z.D. Wang, K.B. Nie, K.K. Deng, and J.G. Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1981. doi: 10.1007/s12613-021-2353-8

    Catalog


    • /

      返回文章
      返回