留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
数据统计

分享

计量
  • 文章访问数:  1989
  • HTML全文浏览量:  981
  • PDF下载量:  57
  • 被引次数: 0
Yikai Liu, Yunming Wang, and Qiusong Chen, Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutants retention and CO2 abatement, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-023-2799-y
Cite this article as:
Yikai Liu, Yunming Wang, and Qiusong Chen, Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutants retention and CO2 abatement, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-023-2799-y
引用本文 PDF XML SpringerLink
  • Invited Review

    Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutants retention and CO2 abatement

    + Author Affiliations
    • Phosphogypsum (PG), a hard-to-dissipate by-product of the phosphorus fertilizer production industry, places strain on the biogeochemical cycles and ecosystem functions of the storage sites, which is already a pervasive problem worldwide and needs careful stewardship. In this review, we examine the presence of potentially toxic elements (PTEs) in PG and describe their associations with soil properties, anthropogenic activities, and surrounding organisms. We then review different ex-/in-situ solutions for promoting the sustainable management of PG, with an emphasis on in-situ cemented paste backfill, which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG. However, the concerns related to the PTEs retention capacity and long-term effectiveness limit the implementation of this down-to-earth strategy. In addition, the technology has recently undergone additional scrutiny in order to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy, as the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO2 emissions. We therefore next discussed how to integrate innovative strategies, including complementary cementitious materials, alternative binder solutions, CO2 curing, CO2 mineralization, and optimization of the supply chain for the profitability and sustainability of PG remediation. Future research will need to bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs to maximize the co-benefits in environmental, social, and economic.

    • loading

    Catalog


    • /

      返回文章
      返回