Cite this article as:

Chen Li, Wenhui Ma, Yang Li, and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp.1241-1248. https://dx.doi.org/10.1007/s12613-023-2800-9
Chen Li, Wenhui Ma, Yang Li, and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp.1241-1248. https://dx.doi.org/10.1007/s12613-023-2800-9
引用本文 PDF XML SpringerLink

嫦娥五号空间风化月壤的冶金性能评价

摘要: 空间冶金是行星空间科学与冶金工程相结合的交叉学科领域,是系统化、理论化的外太空资源就位利用技术。然而,地外环境如月表的太空冶金的实施具有挑战性。由于缺乏大气层和磁场月球表面太空风化严重,使月球土壤的微观结构与地球上的矿物差异显著。本研究中,对嫦娥-5号月壤粉末样品进行扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析。结果表明,月壤的微观结构特征可能会极大地改变其冶金性能。月壤矿物的主要特殊结构包括微陨石撞击形成的纳米相铁、太阳风注入形成的非晶层以及矿物晶体内部高能粒子射线改变的辐射轨迹。纳米铁在月壤中分布广泛,可能对月壤的电磁特性产生重要影响。太阳风注入的氢离子可以促进氢还原过程。广泛分布的非晶层和撞击玻璃可以促进月壤的熔化和扩散过程。因此,月球表面的高能事件虽然改变了月壤,但同时也增加了月壤的化学活性。这是地球样本和传统模拟月球土壤所缺乏的特性。空间冶金的应用需要综合考虑月壤独特的物理和化学性质。

 

Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil

Abstract: Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering. It involves systematic and theoretical engineering technology for utilizing planetary resources in situ. However, space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field, making the microstructure of lunar soil differ from that of minerals on the Earth. In this study, scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples. The microstructural characteristics of the lunar soil may drastically change its metallurgical performance. The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites, the amorphous layer caused by solar wind injection, and radiation tracks modified by high-energy particle rays inside mineral crystals. The nanophase iron presents a wide distribution, which may have a great impact on the electromagnetic properties of lunar soil. Hydrogen ions injected by solar wind may promote the hydrogen reduction process. The widely distributed amorphous layer and impact glass can promote the melting and diffusion process of lunar soil. Therefore, although high-energy events on the lunar surface transform the lunar soil, they also increase the chemical activity of the lunar soil. This is a property that earth samples and traditional simulated lunar soil lack. The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.

 

/

返回文章
返回