留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(10)

数据统计

分享

计量
  • 文章访问数:  693
  • HTML全文浏览量:  172
  • PDF下载量:  39
  • 被引次数: 0
Chen Li, Wenhui Ma, Yang Li,  and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1241-1248. https://doi.org/10.1007/s12613-023-2800-9
Cite this article as:
Chen Li, Wenhui Ma, Yang Li,  and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1241-1248. https://doi.org/10.1007/s12613-023-2800-9
引用本文 PDF XML SpringerLink
研究论文

嫦娥五号空间风化月壤的冶金性能评价


  • 通讯作者:

    马文会    E-mail: mwhsilicon@126.com

    李阳    E-mail: liyang@mail.gyig.ac.cn

文章亮点

  • (1) 系统地研究了嫦娥5号月球样品的表面性质
  • (2) 分析了太空风化月壤的精细结构以及微观物相特点
  • (3) 总结了风化月壤独特的物理化学性质以及资源赋存形式
  • 空间冶金是行星空间科学与冶金工程相结合的交叉学科领域,是系统化、理论化的外太空资源就位利用技术。然而,地外环境如月表的太空冶金的实施具有挑战性。由于缺乏大气层和磁场月球表面太空风化严重,使月球土壤的微观结构与地球上的矿物差异显著。本研究中,对嫦娥-5号月壤粉末样品进行扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析。结果表明,月壤的微观结构特征可能会极大地改变其冶金性能。月壤矿物的主要特殊结构包括微陨石撞击形成的纳米相铁、太阳风注入形成的非晶层以及矿物晶体内部高能粒子射线改变的辐射轨迹。纳米铁在月壤中分布广泛,可能对月壤的电磁特性产生重要影响。太阳风注入的氢离子可以促进氢还原过程。广泛分布的非晶层和撞击玻璃可以促进月壤的熔化和扩散过程。因此,月球表面的高能事件虽然改变了月壤,但同时也增加了月壤的化学活性。这是地球样本和传统模拟月球土壤所缺乏的特性。空间冶金的应用需要综合考虑月壤独特的物理和化学性质。
  • Research Article

    Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil

    + Author Affiliations
    • Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering. It involves systematic and theoretical engineering technology for utilizing planetary resources in situ. However, space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field, making the microstructure of lunar soil differ from that of minerals on the Earth. In this study, scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples. The microstructural characteristics of the lunar soil may drastically change its metallurgical performance. The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites, the amorphous layer caused by solar wind injection, and radiation tracks modified by high-energy particle rays inside mineral crystals. The nanophase iron presents a wide distribution, which may have a great impact on the electromagnetic properties of lunar soil. Hydrogen ions injected by solar wind may promote the hydrogen reduction process. The widely distributed amorphous layer and impact glass can promote the melting and diffusion process of lunar soil. Therefore, although high-energy events on the lunar surface transform the lunar soil, they also increase the chemical activity of the lunar soil. This is a property that earth samples and traditional simulated lunar soil lack. The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.
    • loading
    • [1]
      P.O' Brien and S. Byrne, Physical and chemical evolution of lunar mare regolith, J. Geophys. Res. Planets, 126(2021), No. 2, art. No. e2020JE006634. doi: 10.1029/2020JE006634
      [2]
      K.M. Cannon, C.B. Dreyer, G.F. Sowers, et al., Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies, Acta Astronaut., 196(2022), p. 259. doi: 10.1016/j.actaastro.2022.04.037
      [3]
      C.M. Pieters and S.K. Noble, Space weathering on airless bodies, J. Geophys. Res. Planets, 121(2016), No. 10, p. 1865. doi: 10.1002/2016JE005128
      [4]
      H. Tang, S.J. Wang, and X.Y. Li, Simulation of nanophase iron production in lunar space weathering, Planet. Space Sci., 60(2012), No. 1, p. 322. doi: 10.1016/j.pss.2011.10.006
      [5]
      T. Noguchi, T. Nakamura, M. Kimura, et al., Incipient space weathering observed on the surface of Itokawa dust particles, Science, 333(2011), No. 6046, p. 1121. doi: 10.1126/science.1207794
      [6]
      P.G. Lucey and M.A. Riner, The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury, Icarus, 212(2011), No. 2, p. 451. doi: 10.1016/j.icarus.2011.01.022
      [7]
      T. Hiroi, M. Abe, K. Kitazato, et al., Developing space weathering on the asteroid 25143 Itokawa, Nature, 443(2006), No. 7107, p. 56. doi: 10.1038/nature05073
      [8]
      B. Hapke, Space weathering from Mercury to the asteroid belt, J. Geophys. Res., 106(2001), No. E5, p. 10039. doi: 10.1029/2000JE001338
      [9]
      C.M. Pieters, L.A. Taylor, S.K. Noble, et al., Space weathering on airless bodies: Resolving a mystery with lunar samples, Meteorit. Planet. Sci., 35(2000), No. 5, p. 1101. doi: 10.1111/j.1945-5100.2000.tb01496.x
      [10]
      Y. Liu, L.A. Taylor, J.R. Thompson, D.W. Schnare, and J.S. Park, Unique properties of lunar impact glass: Nanophase metallic Fe synthesis, Am. Mineral., 92(2007), No. 8-9, p. 1420. doi: 10.2138/am.2007.2333
      [11]
      T. Kadono, S. Sugita, N.K. Mitani, et al., Vapor clouds generated by laser ablation and hypervelocity impact, Geophys. Res. Lett., 29(2002), No. 20, art. No. 40-1. doi: 10.1029/2002GL015694
      [12]
      K.A. Holsapple, The scaling of impact processes in planetary sciences, Annu. Rev. Earth Planet. Sci., 21(1993), p. 333. doi: 10.1146/annurev.ea.21.050193.002001
      [13]
      M. Chaussidon, Lunar water from the solar wind, Nat. Geosci., 5(2012), p. 766. doi: 10.1038/ngeo1616
      [14]
      A.T. Basilevsky, A.M. Abdrakhimov, and V.A. Dorofeeva, Water and other volatiles on the Moon: A review, Sol. Syst. Res., 46(2012), No. 2, p. 89. doi: 10.1134/S0038094612010017
      [15]
      M. Anand, Lunar water: A brief review, Earth Moon Planets, 107(2010), No. 1, p. 65. doi: 10.1007/s11038-010-9377-9
      [16]
      G.A. Landis, Materials refining on the Moon, Acta Astronaut., 60(2007), No. 10-11, p. 906. doi: 10.1016/j.actaastro.2006.11.004
      [17]
      C. Li, K. Wei, Y. Li, et al., Theoretical calculation and experimental verification of the vacuum thermal decomposition process of lunar silicon oxide, Vacuum, 202(2022), art. No. 111162. doi: 10.1016/j.vacuum.2022.111162
      [18]
      H.M. Sargeant, S.J. Barber, M. Anand, et al., Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon, Planet. Space Sci., 205(2021), art. No. 105287. doi: 10.1016/j.pss.2021.105287
      [19]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [20]
      R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 644. doi: 10.1007/s12613-020-2157-2
      [21]
      J.L. Zhang, J. Schenk, Z.J. Liu, and K.J. Li, Editorial for special issue on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1817. doi: 10.1007/s12613-022-2535-z
      [22]
      J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
      [23]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [24]
      C. Li, K.X. Wei, Y. Li, et al., A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector, J. Rare Earths, 41(2023), No. 9, p. 1429. doi: 10.1016/j.jre.2022.07.002
      [25]
      Y. Zhong, J.X. Low, Q. Zhu, et al. , In situ resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply, Natl. Sci. Rev., 10(2022), No. 2, art. No. nwac200.
      [26]
      C. Li, H. Hu, M.F. Yang, et al., Characteristics of the lunar samples returned by the Chang’E-5 mission, Natl. Sci. Rev., 9(2022), No. 2, art. No. nwab188. doi: 10.1093/nsr/nwab188
      [27]
      C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
      [28]
      C.W. Bale, E. Bélisle, P. Chartrand, et al., Reprint of: FactSage thermochemical software and databases, 2010–2016, Calphad, 55(2016), p. 1. doi: 10.1016/j.calphad.2016.07.004
      [29]
      C. Li, Y. Li, K.X. Wei, et al., Study on surface characteristics of Chang’E-5 fine grained lunar soil, Sci. Sin. Phys. Mech. Astron., 53(2023), No. 3, art. No. 239603. doi: 10.1360/SSPMA-2022-0343
      [30]
      S. Sasaki, K. Nakamura, Y. Hamabe, E. Kurahashi, and T. Hiroi, Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, 410(2001), No. 6828, p. 555. doi: 10.1038/35069013
      [31]
      M. Anand, L.A. Taylor, M.A. Nazarov, J. Shu, H.K. Mao, and R.J. Hemley, Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite, Proc. Natl. Acad. Sci. USA, 101(2004), No. 18, p. 6847. doi: 10.1073/pnas.0401565101
      [32]
      L.X. Gu, Y.J. Chen, Y.C. Xu, et al., Space weathering of the chang’e-5 lunar sample from a mid-high latitude region on the Moon, Geophys. Res. Lett., 49(2022), No. 7, art. No. e2022GL097875. doi: 10.1029/2022GL097875
      [33]
      C. Li, Z. Guo, Y. Li, et al., Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample, Nat. Astron., 6(2022), p. 1156. doi: 10.1038/s41550-022-01763-3
      [34]
      Z. Guo, C. Li, Y. Li, et al., Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 lunar soil: Implications for thermal effects during impacts, Geophys. Res. Lett., 49(2022), No. 5, art. No. e2021GL097323. doi: 10.1029/2021GL097323
      [35]
      L. Bogani, L. Cavigli, C. de Julián Fernández, et al., Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles, Adv. Mater., 22(2010), No. 36, p. 4054. doi: 10.1002/adma.201002295
      [36]
      J. Zhang, M. Post, T. Veres, et al., Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles, J. Phys. Chem. B, 110(2006), No. 14, p. 7122. doi: 10.1021/jp0560967
      [37]
      Y. Li, In situ investigation of the valence states of iron-bearing phases in Chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques, At. Spectrosc., 43(2022), No. 1, p. 53. doi: 10.46770/AS.2022.014
      [38]
      P. Lakshika, M. Kenichiro, F. Kateřina, K. David, P. Antti, and K. Tomáš, Simulation of space weathering on asteroid spectra through hydrogen ion and laser irradiation of meteorites, Planet. Sci. J., 4(2023), No. 4, p. 72. doi: 10.3847/PSJ/acc848
      [39]
      C.L. Young, M.J. Poston, J.J. Wray, K.P. Hand, and R.W. Carlson, The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies, Icarus, 321(2019), p. 71. doi: 10.1016/j.icarus.2018.10.032
      [40]
      W. Agosto, Beneficiation and powder metallurgical processing of lunar soil metal, [in] 4th Space Manufacturing; Proceedings of the Fifth Conference, Princeton, 1981, p. 3263.
      [41]
      W.N. Agosto, Lunar Beneficiation, NASA. Johnson Space Center, Space Resources, 3(1992), p. 153.
      [42]
      W.N. Agosto, Electrostatic separation and sizing of ilmenite in lunar soil simulants and samples, Lunar Planet. Sci., 15(1984), p. 1.
      [43]
      W.N. Agosto, Electrostatic separation of binary comminuted mineral mixtures, Space Manuf., 53(1983), p. 315.

    Catalog


    • /

      返回文章
      返回