留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(23)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  207
  • HTML全文浏览量:  95
  • PDF下载量:  23
  • 被引次数: 0
Hong Yang, Wenlong Xie, Jiangfeng Song, Zhihua Dong, Yuyang Gao, Bin Jiang, and Fusheng Pan, Current progress of research on heat-resistant Mg alloys: A review, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2802-7
Cite this article as:
Hong Yang, Wenlong Xie, Jiangfeng Song, Zhihua Dong, Yuyang Gao, Bin Jiang, and Fusheng Pan, Current progress of research on heat-resistant Mg alloys: A review, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2802-7
引用本文 PDF XML SpringerLink
特约综述

耐热镁合金的研究进展:综述



  • 通讯作者:

    宋江凤    E-mail: jiangfeng.song@cqu.edu.cn

    蒋斌    E-mail: jiangbinrong@cqu.edu.cn

文章亮点

  • (1) 按照合金成分对耐热镁合金进行了分类和详细介绍。
  • (2) 揭示了不同耐热镁合金的显微组织和高温力学性能。
  • (3) 讨论了不同耐热镁合金的高温力学性能差异及其强化机制。
  • (4) 指出了耐热镁合金的研究重点、局限性和未来前景。
  • 随着节能减排与轻量化设计的发展,轻合金的研究与应用受到广泛的关注,许多重要领域对镁合金的室温和高温力学性能也提出了更高的要求。然而,由于高温下组织软化与晶界滑移等问题,常用的AZ系、AM系等商用镁合金的力学性能会随着温度的升高而显著降低。为满足镁合金构件在高温下的使用需求,过去几十年来,人们一直致力于开发耐热镁合金。目前,镁合金高温性能的提升一般是通过合金化与后续热处理来抑制不稳定相的生成,并促进基体中析出高温稳定的第二相和沉淀物,从而带来显著的固溶强化与沉淀强化作用来强化合金。本文系统地介绍和分析了近些年耐热镁合金领域的研究,对Mg–Al、Mg–Zn、Mg–RE等不同合金体系进行了细致的分类和比较,揭示了其高温力学性能及强化机制。此外,本文也讨论了不同系列耐热镁合金的研究重点、局限性和未来发展前景,以便研究者开发新型耐热镁合金并拓宽其潜在应用领域。
  • Invited Review

    Current progress of research on heat-resistant Mg alloys: A review

    + Author Affiliations
    • With the increasing attention received by lightweight metals, numerous essential fields have increased requirements for magnesium (Mg) alloys with good room-temperature and high-temperature mechanical properties. However, the high-temperature mechanical properties of commonly used commercial Mg alloys, such as AZ91D, deteriorate considerably with increasing temperatures. Over the past several decades, extensive efforts have been devoted to developing heat-resistant Mg alloys. These approaches either inhibit the generation of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening. In this review, numerous studies are systematically introduced and discussed. Different alloy systems, including those based on Mg–Al, Mg–Zn, and Mg–rare earth, are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms. The emphasis, limitations, and future prospects of these heat-resistant Mg alloys are also pointed out and discussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future.
    • loading
    • [1]
      H.T. Jeong and W.J. Kim, The hot compressive deformation behavior of cast Mg–Gd–Y–Zn–Zr alloys with and without LPSO phase in their initial microstructures, J. Magnes. Alloys, 10(2022), No. 10, p. 2901. doi: 10.1016/j.jma.2022.01.006
      [2]
      W.J. Yin, F. Briffod, T. Shiraiwa, and M. Enoki, Mechanical properties and failure mechanisms of Mg–Zn–Y alloys with different extrusion ratio and LPSO volume fraction, J. Magnes. Alloys, 10(2022), No. 8, p. 2158. doi: 10.1016/j.jma.2022.02.004
      [3]
      J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent developments in high-strength Mg–RE-based alloys: Focusing on Mg–Gd and Mg–Y systems, J. Magnes. Alloys, 6(2018), No. 3, p. 277. doi: 10.1016/j.jma.2018.08.001
      [4]
      M.F. Qi, L.Y. Wei, Y.Z. Xu, et al., Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746. doi: 10.1007/s12613-021-2327-x
      [5]
      H.B. Liao, L.L. Mo, X. Zhou, Z.Z. Yuan, and J. Du, Revealing the nucleation event of Mg–Al alloy induced by Fe impurity, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1317. doi: 10.1007/s12613-021-2406-z
      [6]
      M. Pekguleryuz and M. Celikin, Creep resistance in magnesium alloys, Int. Mater. Rev., 55(2010), No. 4, p. 197. doi: 10.1179/095066010X12646898728327
      [7]
      A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev., 49(2004), No. 1, p. 13. doi: 10.1179/095066004225010497
      [8]
      M.O. Pekguleryuz and A.A. Kaya, Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater., 5(2003), No. 12, p. 866. doi: 10.1002/adem.200300403
      [9]
      K.R. Athul, U.T.S. Pillai, A. Srinivasan, and B.C. Pai, A review of different creep mechanisms in Mg alloys based on stress exponent and activation energy, Adv. Eng. Mater., 18(2016), No. 5, p. 770. doi: 10.1002/adem.201500393
      [10]
      K.U. Kainer, Y.D. Huang, H. Dieringa, and N. Hort, Status of the development of creep resistant magnesium materials for automotive applications, Mater. Sci. Forum, 638-642(2010), p. 73. doi: 10.4028/www.scientific.net/MSF.638-642.73
      [11]
      D.H. Zhang, S.C. Zhao, C.L. Wang, et al., Achieving enhanced high-temperature mechanical properties in Mg–Nd–Sm–Zn–Ca–Zr alloy by Ag addition, Mater. Today Commun., 31(2022), art. No. 103666. doi: 10.1016/j.mtcomm.2022.103666
      [12]
      D.H. Zhang, S.C. Zhao, H.T. Chen, Y.C. Feng, E.J. Guo, and J.F. Li, Microstructure and mechanical properties of EK30 alloy synergistically reinforced by Ag alloying and hot extrusion for aerospace applications, Materials, 15(2022), No. 23, art. No. 8613. doi: 10.3390/ma15238613
      [13]
      Z.H. Chen, Heat-Resistant Mg Alloys, Chemical Industry Press, Beijing, 2007.
      [14]
      B.Z. Yin, J.G. Liu, B. Peng, et al., Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion, J. Magnes. Alloys, (2022
      [15]
      N. Mo, Q.Y. Tan, M. Bermingham, et al., Current development of creep-resistant magnesium cast alloys: A review, Mater. Des., 155(2018), p. 422. doi: 10.1016/j.matdes.2018.06.032
      [16]
      Z.P. Yu, Y.H. Yan, J. Yao, et al., Effect of tensile direction on mechanical properties and microstructural evolutions of rolled Mg–Al–Zn–Sn magnesium alloy sheets at room and elevated temperatures, J. Alloys Compd., 744(2018), p. 211. doi: 10.1016/j.jallcom.2018.01.344
      [17]
      H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, and W.J. Ding, In-situ analysis of the tensile deformation modes and anisotropy of extruded Mg–10Gd–3Y–0.5Zr (wt.%) at elevated temperatures, Int. J. Plast., 84(2016), p. 255. doi: 10.1016/j.ijplas.2016.06.001
      [18]
      A. Chapuis and J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater., 59(2011), No. 5, p. 1986. doi: 10.1016/j.actamat.2010.11.064
      [19]
      J.H. Cui, H. Yang, Y.X. Zhou, et al., Optimizing the microstructures and enhancing the mechanical properties of AZ81 alloy by adding TC4 particles, Mater. Sci. Eng. A, 863(2023), art. No. 144518. doi: 10.1016/j.msea.2022.144518
      [20]
      S.H. Lu, D. Wu, R.S. Chen, and E. Han, The influence of temperature on twinning behavior of a Mg–Gd–Y alloy during hot compression, Mater. Sci. Eng. A, 735(2018), p. 173. doi: 10.1016/j.msea.2018.08.004
      [21]
      J. Čapek, G. Farkas, J. Pilch, and K. Máthis, Temperature dependence of twinning activity in random textured cast magnesium, Mater. Sci. Eng. A, 627(2015), p. 333. doi: 10.1016/j.msea.2015.01.017
      [22]
      Z.J. Yu, Y.D. Huang, H. Dieringa, et al., High temperature mechanical behavior of an extruded Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy, Mater. Sci. Eng. A, 645(2015), p. 213. doi: 10.1016/j.msea.2015.08.001
      [23]
      H. Yang, S. Gavras, and H. Dieringa, Creep characteristics of metal matrix composites, [in] D. Brabazon, ed., Encyclopedia of Materials : Composites, Vol. 1, Elsevier, Amsterdam, 2021, p. 375.
      [24]
      H. Yang, X.H. Chen, G.S. Huang, et al., Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective, J. Magnes. Alloys, 10(2022), No. 9, p. 2311. doi: 10.1016/j.jma.2022.07.008
      [25]
      M. Mabuchi and K. Higashi, Strengthening mechanisms of Mg–Si alloys, Acta Mater., 44(1996), No. 11, p. 4611. doi: 10.1016/1359-6454(96)00072-9
      [26]
      T. Dessolier, P. Lhuissier, F. Roussel-Dherbey, et al., Effect of temperature on deformation mechanisms of AZ31 Mg-alloy under tensile loading, Mater. Sci. Eng. A, 775(2020), art. No. 138957. doi: 10.1016/j.msea.2020.138957
      [27]
      D.J. Zhai, X.P. Li, and J. Shen, Mechanism of microarc oxidation on AZ91D alloy induced by β-Mg17Al12 phase, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 712. doi: 10.1007/s12613-023-2752-0
      [28]
      J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
      [29]
      Y.H. Chen, L.P. Wang, Y.C. Feng, E.J. Guo, S.C. Zhao, and L. Wang, Effect of Ca and Sm combined addition on the microstructure and elevated-temperature mechanical properties of Mg–6Al alloys, J. Mater. Eng. Perform., 28(2019), No. 5, p. 2892. doi: 10.1007/s11665-019-04044-9
      [30]
      J.S. Miao, W.H. Sun, A.D. Klarner, and A.A. Luo, Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg–Al–Sn–Ag alloy, Scripta Mater., 154(2018), p. 192. doi: 10.1016/j.scriptamat.2018.05.047
      [31]
      K. Korgiopoulos, B. Langelier, and M. Pekguleryuz, Mg17Al12 phase refinement and the improved mechanical performance of Mg–6Al alloy with trace erbium addition, Mater. Sci. Eng. A, 812(2021), art. No. 141075. doi: 10.1016/j.msea.2021.141075
      [32]
      P.P. Wang, H.T. Jiang, Y.J. Wang, et al., Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1559. doi: 10.1007/s12613-021-2268-4
      [33]
      K.M. Asl, A. Tari, and F. Khomamizadeh, The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 1. doi: 10.1016/j.msea.2009.06.048
      [34]
      A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy, Metall. Mater. Trans. A, 36(2005), No. 8, p. 2235. doi: 10.1007/s11661-005-0342-6
      [35]
      A. Srinivasan, U.T.S. Pillai, J. Swaminathan, S.K. Das, and B.C. Pai, Observations of microstructural refinement in Mg–Al–Si alloys containing strontium, J. Mater. Sci., 41(2006), No. 18, p. 6087. doi: 10.1007/s10853-006-0643-1
      [36]
      A. Srinivasan, K.K. Ajithkumar, J. Swaminathan, U.T.S. Pillai, and B.C. Pai, Creep behavior of AZ91 magnesium alloy, Procedia Eng., 55(2013), p. 109. doi: 10.1016/j.proeng.2013.03.228
      [37]
      J.H. Chen, Z.H. Chen, H.G. Yan, F.Q. Zhang, and K. Liao, Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys, J. Alloys Compd., 461(2008), No. 1-2, p. 209. doi: 10.1016/j.jallcom.2007.07.066
      [38]
      D.H. Kang, S.S. Park, and N.J. Kim, Development of creep resistant die cast Mg–Sn–Al–Si alloy, Mater. Sci. Eng. A, 413-414(2005), p. 555. doi: 10.1016/j.msea.2005.09.022
      [39]
      H.X. Li, W.J. Xu, Y.F. Zhang, et al., Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 129. doi: 10.1007/s12613-023-2759-6
      [40]
      J.S. Xie, Z. Zhang, S.J. Liu, et al., Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 82. doi: 10.1007/s12613-022-2472-x
      [41]
      T.T. Zhang, W.B. Yu, C.S. Ma, W.T. Chen, L. Zhang, and S.M. Xiong, The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy, J. Magnes. Alloys, 11(2023), No. 9, p. 3141. doi: 10.1016/j.jma.2022.05.001
      [42]
      R. Mahmudi, F. Kabirian, and Z. Nematollahi, Microstructural stability and high-temperature mechanical properties of AZ91 and AZ91+2RE magnesium alloys, Mater. Des., 32(2011), No. 5, p. 2583. doi: 10.1016/j.matdes.2011.01.040
      [43]
      X.X. Dong, L.Y. Feng, S.H. Wang, E.A. Nyberg, and S.X. Ji, A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C, J. Magnes. Alloys, 9(2021), No. 1, p. 90. doi: 10.1016/j.jma.2020.09.012
      [44]
      I.A. Anyanwu, Y. Gokan, A. Suzuki, et al., Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg–Zn–Al–Ca–RE alloys, Mater. Sci. Eng. A, 380(2004), No. 1-2, p. 93. doi: 10.1016/j.msea.2004.03.039
      [45]
      T. Homma, S. Hirawatari, H. Sunohara, and S. Kamado, Room and elevated temperature mechanical properties in the as-extruded Mg–Al–Ca–Mn alloys, Mater. Sci. Eng. A, 539(2012), p. 163. doi: 10.1016/j.msea.2012.01.074
      [46]
      A. Suzuki, N.D. Saddock, J.W. Jones, and T.M. Pollock, Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys, Acta Mater., 53(2005), No. 9, p. 2823. doi: 10.1016/j.actamat.2005.03.001
      [47]
      Z. Zhang, A. Couture, and A. Luo, An investigation of the properties of Mg–Zn–Al alloys, Scripta Mater., 39(1998), No. 1, p. 45. doi: 10.1016/S1359-6462(98)00122-5
      [48]
      B. Tang, J.L. Fu, J.K. Feng, X.T. Zhong, Y.Y. Guo, and H.L. Wang, Effect of Zn content on microstructure, mechanical properties and thermal conductivity of extruded Mg–Zn–Ca–Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2411. doi: 10.1007/s12613-023-2676-8
      [49]
      K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y
      [50]
      W.Q. Zhang, W.L. Xiao, F. Wang, and C.L. Ma, Development of heat resistant Mg–Zn–Al-based magnesium alloys by addition of La and Ca: Microstructure and tensile properties, J. Alloys Compd., 684(2016), p. 8. doi: 10.1016/j.jallcom.2016.05.137
      [51]
      W.F. Mo, L. Zhang, G.H. Wu, Y. Zhang, W.C. Liu, and C.L. Wang, Effects of processing parameters on microstructure and mechanical properties of squeeze-cast Mg–12Zn–4Al–0.5Ca alloy, Mater. Des., 63(2014), p. 729. doi: 10.1016/j.matdes.2014.07.005
      [52]
      S.M. Zhu, M.A. Easton, T.B. Abbott, et al., Evaluation of magnesium die-casting alloys for elevated temperature applications: Microstructure, tensile properties, and creep resistance, Metall. Mater. Trans. A, 46(2015), No. 8, p. 3543. doi: 10.1007/s11661-015-2946-9
      [53]
      W.L. Xiao, Y.S. Shen, L.D. Wang, et al., The influences of rare earth content on the microstructure and mechanical properties of Mg–7Zn–5Al alloy, Mater. Des., 31(2010), No. 7, p. 3542. doi: 10.1016/j.matdes.2010.01.046
      [54]
      X. Gao and J.F. Nie, Characterization of strengthening precipitate phases in a Mg–Zn alloy, Scripta Mater., 56(2007), No. 8, p. 645. doi: 10.1016/j.scriptamat.2007.01.006
      [55]
      C.J. Bettles, M.A. Gibson, K. Venkatesan, Enhanced age-hardening behaviour in Mg–4 wt.% Zn micro-alloyed with Ca, Scripta Mater., 51(2004), No. 3, p. 193. doi: 10.1016/j.scriptamat.2004.04.020
      [56]
      S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, A.F. Lotfabadi, and A. Ourdjini, In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems, Thermochim. Acta, 527(2012), p. 180. doi: 10.1016/j.tca.2011.10.027
      [57]
      F. Naghdi, R. Mahmudi, J.Y. Kang, and H.S. Kim, Microstructure and high-temperature mechanical properties of the Mg–4Zn–0.5Ca alloy in the as-cast and aged conditions, Mater. Sci. Eng. A, 649(2016), p. 441. doi: 10.1016/j.msea.2015.10.011
      [58]
      Y. Ishiguro, X.S. Huang, Y. Tsukada, T. Koyama, and Y. Chino, Effect of bending and tension deformation on the texture evolution and stretch formability of Mg–Zn–RE–Zr alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1334. doi: 10.1007/s12613-021-2398-8
      [59]
      N. Tahreen and D.L. Chen, A critical review of Mg–Zn–Y series alloys containing I, W, and LPSO phases, Adv. Eng. Mater., 18(2016), No. 12, p. 1983. doi: 10.1002/adem.201600393
      [60]
      Z.C. Xu, C. Zhu, X.F. Guo, W.P. Yang, H.B. Cui, and Y. Wang, Effect of multi-pass equal channel angular pressing on the microstructure and mechanical properties of a directional solidification Mg98.5Zn0.5Y1 alloy, Mater. Trans., 60(2019), No. 11, p. 2361. doi: 10.2320/matertrans.M2019088
      [61]
      M. Mehrabi-Mehdiabadi and R. Mahmudi, Effects of yttrium addition on microstructural stability and elevated-temperature mechanical properties of a cast Mg–Zn alloy, J. Alloys Compd., 820(2020), art. No. 153083. doi: 10.1016/j.jallcom.2019.153083
      [62]
      J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43(2012), No. 11, p. 3891. doi: 10.1007/s11661-012-1217-2
      [63]
      S. Yuan, J.H. Wang, X.Q. Li, H.B. Ma, L. Zhang, and P.P. Jin, Enhanced mechanical properties of Mg–1Al–12Y alloy containing long period stacking ordered phase, J. Magnes. Alloys, 11(2023), No. 12, p. 4679. doi: 10.1016/j.jma.2022.03.005
      [64]
      N. Hort, Y. Huang, and K.U. Kainer, Intermetallics in magnesium alloys, Adv. Eng. Mater., 8(2006), No. 4, p. 235. doi: 10.1002/adem.200500202
      [65]
      T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, and J.F. Nie, The effect of alloy composition on the microstructure and tensile properties of binary Mg–rare earth alloys, Intermetallics, 17(2009), No. 7, p. 481. doi: 10.1016/j.intermet.2008.12.009
      [66]
      J.H. Zhang, H.F. Liu, W. Sun, H.Y. Lu, D.X. Tang, and J. Meng, Influence of structure and ionic radius on solubility limit in the Mg–Re systems, Mater. Sci. Forum, 561(2007), p. 143.
      [67]
      J. Wang, L. Luo, Q.H. Huo, et al., Creep behaviors of a highly concentrated Mg–18 wt%Gd binary alloy with and without artificial aging, J. Alloys Compd., 774(2019), p. 1036. doi: 10.1016/j.jallcom.2018.10.013
      [68]
      H.Y. Guo, S.H. Liu, L. Huang, D.Q. Wang, Y. Du, and M.Q. Chu, Thermal conductivity of As-cast and annealed Mg–RE binary alloys, Metals, 11(2021), No. 4, art. No. 554. doi: 10.3390/met11040554
      [69]
      S.M. Zhu, M.A. Gibson, M.A. Easton, and J.F. Nie, The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys, Scripta Mater., 63(2010), No. 7, p. 698. doi: 10.1016/j.scriptamat.2010.02.005
      [70]
      D. Weiss, A.A. Kaya, E. Aghion, and D. Eliezer, Microstructure and creep properties of a cast Mg–1.7%wt rare earth–0.3%wt Mn alloy, J. Mater. Sci., 37(2002), No. 24, p. 5371. doi: 10.1023/A:1021001813867
      [71]
      L.Y. Feng, X.X. Dong, Q. Cai, B. Wang, and S.X. Ji, Effect of Nd on the microstructure and mechanical properties of Mg–La–Ce alloys at ambient and elevated temperatures, J. Mater. Eng. Perform., 32(2023), No. 6, p. 2598. doi: 10.1007/s11665-022-06853-x
      [72]
      A.R. Natarajan, E.L.S. Solomon, B. Puchala, E.A. Marquis, and A.V. D Ven, On the early stages of precipitation in dilute Mg–Nd alloys, Acta Mater., 108(2016), p. 367. doi: 10.1016/j.actamat.2016.01.055
      [73]
      D.H. Ping, K. Hono, and J.F. Nie, Atom probe characterization of plate-like precipitates in a Mg–RE–Zn–Zr casting alloy, Scripta Mater., 48(2003), No. 8, p. 1017. doi: 10.1016/S1359-6462(02)00586-9
      [74]
      Y.Y. Zhou, P.H. Fu, L.M. Peng, et al., Precipitation modification in cast Mg–1Nd–1Ce–Zr alloy by Zn addition, J. Magnes. Alloys, 7(2019), No. 1, p. 113. doi: 10.1016/j.jma.2019.02.003
      [75]
      J.H. Jun, K.D. Seong, and M.H. Lee, Effect of zirconium on high temperature tensile properties of precipitation- hardened Mg–Nd–Zn casting alloy, Int. J. Mod. Phys. B, 23(2009), No. 6-7, p. 966.
      [76]
      S.H. Wang, J.L. Yang, J.Q. Pan, et al., Unveiling the mechanical response and deformation mechanism of extruded Mg–2.5Nd–0.5Zn–0.5Zr alloy sheet under high-temperature tensile, J. Alloys Compd., 911(2022), art. No. 164987. doi: 10.1016/j.jallcom.2022.164987
      [77]
      X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure, Acta Mater., 58(2010), No. 14, p. 4760. doi: 10.1016/j.actamat.2010.05.012
      [78]
      G. Garces, P. Perez, S. Cabeza, S. Kabra, W. Gan, and P. Adeva, Effect of extrusion temperature on the plastic deformation of an Mg–Y–Zn alloy containing LPSO phase using in situ neutron diffraction, Metall. Mater. Trans. A, 48(2017), No. 11, p. 5332. doi: 10.1007/s11661-017-4284-6
      [79]
      H. Liu, H. Huang, C. Li, and X.W. Yang, Effects of Y content on mechanical properties of extruded Mg–Y–Zn alloys at room and elevated temperatures, Ordnance Mater. Sci. Eng., 40(2017), No. 2, p. 34.
      [80]
      Z.L. Jin, Q.D. Wang, J. Zheng, and W.J. Ding, Effects of Y content on microstructure and properties of Mg–Y–Zn–Zr alloy, Spec. Cast. No. ferrous Alloys, 29(2009), No. 7, p. 656.
      [81]
      M. Sun, G.H. Wu, W. Wang, Z.Q. Hou, B. Chen, and W.J. Ding, Research progress of Mg–Gd alloy, Mater. Reports, 23(2009), No. 6, p. 98.
      [82]
      H.Z. Zhan, As-cast microstructures and properties of Mg–Gd alloy, Foundry Technol., 39(2018), No. 1, p. 54.
      [83]
      S.X. Ouyang, G.Y. Yang, H. Qin, C.H. Wang, S.F. Luo, and W.Q. Jie, Effect of the precipitation state on high temperature tensile and creep behaviors of Mg–15Gd alloy, J. Magnes. Alloys, 10(2022), No. 12, p. 3459. doi: 10.1016/j.jma.2021.06.016
      [84]
      K. Liu, J.H. Zhang, L.L. Rokhlin, F.M. Elkin, D.X. Tang, and J. Meng, Microstructures and mechanical properties of extruded Mg–8Gd–0.4Zr alloys containing Zn, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 13. doi: 10.1016/j.msea.2008.12.023
      [85]
      H. Li, W.B. Du, S.B. Li, and Z.H. Wang, Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg–Zn–Er alloys, Mater. Des., 35(2012), p. 259. doi: 10.1016/j.matdes.2011.10.002
      [86]
      S.J. Cui, H.R. Geng, X.Y. Teng, X.W. Wu, P. Jia, and C. Wu, Microstructure and mechanical properties of Mg–Er–Zn alloys with LPSO phase, Mater. Sci. Forum, 898(2017), p. 53. doi: 10.4028/www.scientific.net/MSF.898.53
      [87]
      L.X. Hong, R.X. Wang, and X.B. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1570. doi: 10.1007/s12613-021-2264-8
      [88]
      L.D. Wang, C.Y. Xing, X.L. Hou, Y.M. Wu, J.F. Sun, and L.M. Wang, Microstructures and mechanical properties of as-cast Mg–5Y–3Nd–Zr–xGd (x = 0, 2 and 4wt.%) alloys, Mater. Sci. Eng. A, 527(2010), No. 7-8, p. 1891. doi: 10.1016/j.msea.2009.11.026
      [89]
      Z.L. Ning, J.Y. Yi, M. Qian, et al., Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5Zr alloy in the product form of a large structural casting, Mater. Des., 60(2014), p. 218. doi: 10.1016/j.matdes.2014.03.062
      [90]
      R. Ma, S.H. Lv, Z.F. Xie, et al., Achieving high strength–ductility in a wrought Mg–9Gd–3Y–0.5Zr alloy by modifying with minor La addition, J. Alloys Compd., 884(2021), art. No. 161062. doi: 10.1016/j.jallcom.2021.161062
      [91]
      A. Movahedi-Rad and R. Mahmudi, Effect of Ag addition on the elevated-temperature mechanical properties of an extruded high strength Mg–Gd–Y–Zr alloy, Mater. Sci. Eng. A, 614(2014), p. 62. doi: 10.1016/j.msea.2014.07.022
      [92]
      X.H. Guan, W. Wang, T. Zhang, et al., A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg–Gd–Y–Zn–Zr alloy prepared by multi-pass friction stir processing, J. Magnes. Alloys, (2022
      [93]
      J.Y. Li, F.L. Wang, J. Zeng, et al., Decreasing the mechanical anisotropy of the forged Mg–8.5Gd–2.5Y–1.5Zn–0.5Zr alloy by modulating blocky LPSO particles using multi-directional forging, J. Magnes. Alloys, (2022
      [94]
      S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C, J. Alloys Compd., 421(2006), No. 1-2, p. 309. doi: 10.1016/j.jallcom.2005.11.046
      [95]
      H.R.J. No. ooshan, G.H. Wu, W.C. Liu, G.L. Wei, Y.L. Li, and S. Zhang, Effect of Gd content on high temperature mechanical properties of Mg–Gd–Y–Zr alloy, Mater. Sci. Eng. A, 651(2016), p. 840. doi: 10.1016/j.msea.2015.11.047
      [96]
      J. Wang, J. Meng, D.P. Zhang, and D.X. Tang, Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 78. doi: 10.1016/j.msea.2006.11.096
      [97]
      T. Homma, N. Kunito, and S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater., 61(2009), No. 6, p. 644. doi: 10.1016/j.scriptamat.2009.06.003
      [98]
      X.L. Hou, Q.M. Peng, Z.Y. Cao, et al., Structure and mechanical properties of extruded Mg–Gd based alloy sheet, Mater. Sci. Eng. A, 520(2009), No. 1-2, p. 162. doi: 10.1016/j.msea.2009.05.034
      [99]
      Z.J. Yu, Y.D. Huang, X. Qiu, et al., Fabrication of magnesium alloy with high strength and heat-resistance by hot extrusion and ageing, Mater. Sci. Eng. A, 578(2013), p. 346. doi: 10.1016/j.msea.2013.04.108
      [100]
      Q.M. Peng, X.L. Hou, L.D. Wang, Y.M. Wu, Z.Y. Cao, and L.M. Wang, Microstructure and mechanical properties of high performance Mg–Gd based alloys, Mater. Des., 30(2009), No. 2, p. 292. doi: 10.1016/j.matdes.2008.04.069
      [101]
      X.B. Liu, R.S. Chen, and E.H. Han, Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions, J. Alloys Compd., 465(2008), No. 1-2, p. 232. doi: 10.1016/j.jallcom.2007.10.068
      [102]
      Y.Q. Chi, M.Y. Zheng, C. Xu, et al., Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg–8.2Gd–3.8Y–1Zn–0.4Zr (wt%) alloy, Mater. Sci. Eng. A, 565(2013), p. 112. doi: 10.1016/j.msea.2012.11.125
      [103]
      N. Wang, Q. Yang, X.L. Li, et al., Microstructures and mechanical properties of a Mg–9Gd−3Y−0.6Zn−0.4Zr (wt.%) alloy modified by Y-rich misch metal, Mater. Sci. Eng. A, 806(2021), art. No. 140609. doi: 10.1016/j.msea.2020.140609
      [104]
      C. Xu, T. Nakata, G.H. Fan, X.W. Li, G.Z. Tang, and S. Kamado, Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr, J. Magnes. Alloys, 7(2019), No. 3, p. 388. doi: 10.1016/j.jma.2019.04.007
      [105]
      N. Su, Y.J. Wu, Q.C. Deng, et al., Synergic effects of Gd and Y contents on the age-hardening response and elevated-temperature mechanical properties of extruded Mg–Gd(–Y)–Zn–Mn alloys, Mater. Sci. Eng. A, 810(2021), art. No. 141019. doi: 10.1016/j.msea.2021.141019
      [106]
      Y. Feng, J.H. Zhang, P.F. Qin, et al., Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg–Er–Y–Zn alloy containing nano-spaced stacking faults, Mater. Charact., 155(2019), art. No. 109823. doi: 10.1016/j.matchar.2019.109823
      [107]
      D.P. Zhang, J.H. Zhang, Y.Q. Zhang, et al., Superior high-temperature strength in a low RE containing Mg extrusion alloy with nano-spaced stacking faults, Mater. Sci. Eng. A, 854(2022), art. No. 143791. doi: 10.1016/j.msea.2022.143791
      [108]
      L. Liu, X.J. Zhou, S.L. Yu, et al., Effects of heat treatment on mechanical properties of an extruded Mg–4.3Gd–3.2Y–1.2Zn–0.5Zr alloy and establishment of its Hall–Petch relation, J. Magnes. Alloys, 10(2022), No. 2, p. 501. doi: 10.1016/j.jma.2020.09.023
      [109]
      J. Kuang, Y.Q. Zhang, X.P. Du, J.Y. Zhang, G. Liu, and J. Sun, On the strengthening and slip activity of Mg–3Al–1Zn alloy with pre-induced{101 $ \bar{2} $}twins, J. Magnes. Alloys, 11(2023), No. 4, p. 1292. doi: 10.1016/j.jma.2021.07.016
      [110]
      X.J. Luo, H. Yang, J.X. Zhou, et al., Achieving outstanding heat-resistant Mg–Gd–Y–Zn–Mn alloy via introducing RE/Zn segregation on α-Mn nanoparticles, Scripta Mater., 236(2023), art. No. 115672. doi: 10.1016/j.scriptamat.2023.115672
      [111]
      J.X. Zhou, H. Yang, X.J. Luo, et al., Deformation behaviors and the related high-temperature mechanical properties of Mg–11Gd–5Y–2Zn–0.7Zr via regulating extrusion temperatures, J. Mater. Res. Technol., 26(2023), p. 703. doi: 10.1016/j.jmrt.2023.07.213
      [112]
      S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, et al., Magnesium-based nanocomposites: A review from mechanical, creep and fatigue properties, J. Magnes. Alloys, 11(2023), No. 8, p. 2655. doi: 10.1016/j.jma.2023.08.005
      [113]
      F. Aydin, Effect of solid waste materials on properties of magnesium matrix composites - A systematic review, J. Magnes. Alloys, 10(2022), No. 10, p. 2673. doi: 10.1016/j.jma.2022.09.005
      [114]
      L.B. Tong, Q.X. Zhang, Z.H. Jiang, et al., Microstructures, mechanical properties and corrosion resistances of extruded Mg–Zn–Ca–xCe/La alloys, J. Mech. Behav. Biomed. Mater., 62(2016), p. 57. doi: 10.1016/j.jmbbm.2016.04.038
      [115]
      L.T. Yu, Z.H. Zhao, C.K. Tang, W. Li, C. You, and M.F. Chen, The mechanical and corrosion resistance of Mg–Zn–Ca–Ag alloys: The influence of Ag content, J. Mater. Res. Technol., 9(2020), No. 5, p. 10863. doi: 10.1016/j.jmrt.2020.07.088

    Catalog


    • /

      返回文章
      返回