留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(9)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1594
  • HTML全文浏览量:  216
  • PDF下载量:  57
  • 被引次数: 0
Liuhua Yang, Hengwei Jia, Aixiang Wu, Huazhe Jiao, Xinming Chen, Yunpeng Kou, and Mengmeng Dong, Particle aggregation and breakage kinetics in cemented paste backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1965-1974. https://doi.org/10.1007/s12613-023-2804-5
Cite this article as:
Liuhua Yang, Hengwei Jia, Aixiang Wu, Huazhe Jiao, Xinming Chen, Yunpeng Kou, and Mengmeng Dong, Particle aggregation and breakage kinetics in cemented paste backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1965-1974. https://doi.org/10.1007/s12613-023-2804-5
引用本文 PDF XML SpringerLink
研究论文

全尾砂膏体颗粒动力学及其影响因素


  • 通讯作者:

    杨柳华    E-mail: yanglh2005@163.com

文章亮点

  • (1) 系统地研究了质量分数、灰砂比、外加剂及剪切扰动对膏体颗粒动力学的影响;
  • (2) 引入聚集常数及分散常数构建了膏体颗粒动力学理论模型;
  • (3) 揭示了膏体内部细观结构时空演变机制。
  • 膏体宏观流动和流变特性受到其细观结构的影响。本文通过应用聚焦光束反射测量技术(FBRM),对不同条件下絮团(团聚体/颗粒)的粒径变化和分布进行监测,并对絮团聚集和破碎动力学影响因素进行了讨论。结果表明,膏体动力学演化受到内部因素及外部因素的协同作用影响,可分为动态阶段和稳定阶段。提高质量浓度或增大灰砂比都能增大膏体聚集常数,有助于絮团平均弦长增大;而外加剂及扰动增大了分散常数,促使絮团平均弦长减小。弦长分布曲线峰值在20 μm左右,近似正态分布。聚集系数(k2)与扰动速率成正相关,且分散常数(k1)比聚集常数(k2)值高出近5个数量级。动力学模型定量描述了颗粒随时间的演化规律,为研究膏体复杂流变行为的微观机制提供理论支撑。
  • Research Article

    Particle aggregation and breakage kinetics in cemented paste backfill

    + Author Affiliations
    • The macroscopic flow behavior and rheological properties of cemented paste backfill (CPB) are highly impacted by the inherent structure of the paste matrix. In this study, the effects of shear-induced forces and proportioning parameters on the microstructure of fresh CPB were studied. The size evolution and distribution of floc/agglomerate/particles of paste were monitored by focused beam reflection measuring (FBRM) technique, and the influencing factors of aggregation and breakage kinetics of CPB were discussed. The results indicate that influenced by both internal and external factors, the paste kinetics evolution covers the dynamic phase and the stable phase. Increasing the mass content or the cement–tailings ratio can accelerate aggregation kinetics, which is advantageous for the rise of average floc size. Besides, the admixture and high shear can improve breaking kinetics, which is beneficial to reduce the average floc size. The chord length resembles a normal distribution somewhat, with a peak value of approximate 20 μm. The particle disaggregation constant (k2) is positively correlated with the agitation rate, and k2 is five orders of magnitude greater than the particle aggregation constant (k1). The kinetics model depicts the evolution law of particles over time quantitatively and provides a theoretical foundation for the micromechanics of complicated rheological behavior of paste.
    • loading
    • [1]
      A.X. Wu, Y. Wang, Z.E. Ruan, B.L. Xiao, J.D. Wang, and L.Q. Wang, Key theory and technology of cemented paste backfill for green mining of metal mines, Green Smart Min. Eng., 1(2024), No. 1, p. 27. doi: 10.1016/j.gsme.2024.04.003
      [2]
      H.Z. Jiao, W.X. Zhang, Y.X. Yang, et al., Static mechanical characteristics and meso-damage evolution characteristics of layered backfill under the condition of inclined interface, Constr. Build. Mater., 366(2023), art. No. 130113. doi: 10.1016/j.conbuildmat.2022.130113
      [3]
      J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
      [4]
      L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
      [5]
      Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191. doi: 10.1007/s12613-020-1977-4
      [6]
      H.Z. Jiao, X. Chen, Y.X. Yang, X.M. Chen, L.H. Yang, and T.Y. Yang, Mechanical properties and meso-structure of concrete under the interaction between basalt fiber and polymer, Constr. Build. Mater., 404(2023), art. No. 133223. doi: 10.1016/j.conbuildmat.2023.133223
      [7]
      F. Puertas, C. Varga, and M.M. Alonso, Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution, Cem. Concr. Compos., 53(2014), p. 279. doi: 10.1016/j.cemconcomp.2014.07.012
      [8]
      H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
      [9]
      H. Temmen, H. Pleiner, M. Liu, and H.R. Brand, Convective nonlinearity in non-Newtonian fluids, Phys. Rev. Lett., 84(2000), No. 15, p. 3228. doi: 10.1103/PhysRevLett.84.3228
      [10]
      H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
      [11]
      T. Belem and M. Benzaazoua, Design and application of underground mine paste backfill technology, Geotech. Geol. Eng., 26(2008), No. 2, p. 147. doi: 10.1007/s10706-007-9154-3
      [12]
      S. Ouellet, B. Bussière, M. Aubertin, and M. Benzaazoua, Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results, Cem. Concr. Res., 37(2007), No. 12, p. 1654. doi: 10.1016/j.cemconres.2007.08.016
      [13]
      H. Zhang, S. Cao, and E. Yilmaz, Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill, Constr. Build. Mater., 343(2022), art. No. 128137. doi: 10.1016/j.conbuildmat.2022.128137
      [14]
      A. Heath, P. Fawell, P. Bahri, and J. Swift, Estimating average particle size by focused beam reflectance measurement (FBRM), Part. Part. Syst. Charact., 19(2002), No. 2, art. No. 84. doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
      [15]
      H.J. Yim, J.H. Kim, and S.P. Shah, Cement particle flocculation and breakage monitoring under Couette flow, Cem. Concr. Res., 53(2013), p. 36. doi: 10.1016/j.cemconres.2013.05.018
      [16]
      H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538. doi: 10.1007/s12613-022-2587-0
      [17]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [18]
      R.D. Ferron, S. Shah, E. Fuente, and C. Negro, Aggregation and breakage kinetics of fresh cement paste, Cem. Concr. Res., 50(2013), p. 1. doi: 10.1016/j.cemconres.2013.03.002
      [19]
      R.P. Ferron, Formwork Pressure of Self-Consolidating Concrete : Influence of Flocculation Mechanisms , Structural Rebuilding , Thixotropy and Rheology [Dissertation], Northwestern University, Evanston, 2008.
      [20]
      E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008
      [21]
      B. Fitch, Current theory and thickener design, Ind. Eng. Chem., 58(1966), No. 10, p. 18. doi: 10.1021/ie50682a006
      [22]
      D.N. Thomas, S.J. Judd, and N. Fawcett, Flocculation modelling: A review, Water Res., 33(1999), No. 7, p. 1579. doi: 10.1016/S0043-1354(98)00392-3
      [23]
      M.L. Xie and Q. He, Solution of Smoluchowski coagulation equation for Brownian motion with TEMOM, Particuology, 70(2022), p. 64. doi: 10.1016/j.partic.2022.01.006
      [24]
      G.Z. Yin, X.F. Jing, Z.A. Wei, and X.S. Li, Study of model test of seepage characteristics and field measurement of coarse and fine tailings dam, Chin. J. Rock Mech. Eng., 29(2010), Suppl. 2, p. 3710.
      [25]
      D.W. Zhang, X.M. Sun, Z.Y. Xu, C.L. Xia, and H. Li, Stability of superplasticizer on NaOH activators and influence on the rheology of alkali-activated fly ash fresh pastes, Constr. Build. Mater., 341(2022), art. No. 127864. doi: 10.1016/j.conbuildmat.2022.127864
      [26]
      H.Y. Cheng, Z.M. Liu, S.C. Wu, et al., Resistance characteristics of paste pipeline flow in a pulse-pumping environment, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1596. doi: 10.1007/s12613-023-2644-3
      [27]
      S.H. Yin, J.M. Liu, W. Chen, Y.J. Shao, L.B. Wu, and X.T. Wang, Rheological properties of coarse aggregate at low temperature and its regression models, J. Cent. South Univ. Sci. Technol., 51(2020), No. 12, p. 3379.
      [28]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [29]
      L.A. Glasgow and R.H. Luecke, Mechanisms of deaggregation for clay–polymer flocs in turbulent systems, Ind. Eng. Chem. Fund., 19(1980), No. 2, p. 148. doi: 10.1021/i160074a003
      [30]
      B.H. Cho, W. Chung, and B.H. Nam, Molecular dynamics simulation of calcium–silicate–hydrate for nano-engineered cement composites—A review, Nanomaterials, 10(2020), No. 11, art. No. 2158. doi: 10.3390/nano10112158
      [31]
      C. Negro, A. Blanco, E. Fuente, L.M. Sánchez, and J. Tijero, Influence of flocculant molecular weight and anionic charge on flocculation behaviour and on the manufacture of fibre cement composites by the Hatschek process, Cem. Concr. Res., 35(2005), No. 11, p. 2095. doi: 10.1016/j.cemconres.2005.03.004
      [32]
      S.B. Grant, J.H. Kim, and C. Poor, Kinetic theories for the coagulation and sedimentation of particles, J. Colloid Interface Sci., 238(2001), No. 2, p. 238. doi: 10.1006/jcis.2001.7477
      [33]
      P. Jarvis, B. Jefferson, J. Gregory, and S.A. Parsons, A review of floc strength and breakage, Water Res., 39(2005), No. 14, p. 3121. doi: 10.1016/j.watres.2005.05.022
      [34]
      J. Plank, E. Sakai, C.W. Miao, C. Yu, and J.X Hong, Chemical admixtures — Chemistry, applications and their impact on concrete microstructure and durability, Cem. Concr. Res., 78(2015), p. 81. doi: 10.1016/j.cemconres.2015.05.016

    Catalog


    • /

      返回文章
      返回