留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(6)

数据统计

分享

计量
  • 文章访问数:  524
  • HTML全文浏览量:  219
  • PDF下载量:  36
  • 被引次数: 0
Miao Du, Hongyan Lü, Kaidi Du, Shuohang Zheng, Xiaotong Wang, Xiaotong Deng, Ronghua Zeng, and Xinglong Wu, Upcycling the spent graphite/LiCoO2 batteries for high-voltage graphite/LiCoPO4-co-workable dual-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1745-1751. https://doi.org/10.1007/s12613-023-2807-2
Cite this article as:
Miao Du, Hongyan Lü, Kaidi Du, Shuohang Zheng, Xiaotong Wang, Xiaotong Deng, Ronghua Zeng, and Xinglong Wu, Upcycling the spent graphite/LiCoO2 batteries for high-voltage graphite/LiCoPO4-co-workable dual-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1745-1751. https://doi.org/10.1007/s12613-023-2807-2
引用本文 PDF XML SpringerLink
研究论文

升级再造废旧锂电材料为高电压双离子电池正极



  • 通讯作者:

    吴兴隆    E-mail: xinglong@nenu.edu.cn

文章亮点

  • (1) 针对废旧锂离子电池材料,提出了一种新型的正、负电极同步回收策略
  • (2) 将废旧石墨/钴酸锂电池的正负极同步回收,开发了阴阳离子接力储能的双离子电池
  • (3) 巧妙地利用廉价易得的废旧石墨提升磷酸钴锂材料的电子导电率及电化学性能
  • 电化学储能技术作为化石能源向清洁能源过渡的最先进的方法之一,正在以越来越快的速度发展,推动着碳中和未来的实现。其中,锂离子电池凭借优异的电化学性能和良好的安全性能已广泛应用于电动工具和便携式电子产品中。与此同时,废旧锂离子电池的数量也急剧增加,预计到2030年将会产生1100万吨的废旧锂离子电池。然而,目前传统的回收方法(湿法和火法回收法)仍然存在一定的局限性(消耗大量化学试剂,产生二次污染和能耗高)。因此,该论文提出了一种生态友好且可持续的双回收策略,即将废锂离子电池的钴酸锂正极和石墨负极材料同步回收,并将回收的钴酸锂升级处理为磷酸钴锂。随后,将磷酸钴锂和石墨以1:1的质量比混合,并用于锂离子/六氟磷酸根共脱嵌的双离子电池中。在25 mA g-1 的电流密度下,该双离子电池可发挥出86.2 mAh g-1的放电比容量,且循环 400 次后的容量保持率为69%。对废旧锂离子电池的正负极进行双重回收可避免资源浪费,并获得性能优异的正极材料,从而为设计新型二次电池提供了一种生态友好和可持续发展的途径。
  • Research Article

    Upcycling the spent graphite/LiCoO2 batteries for high-voltage graphite/LiCoPO4-co-workable dual-ion batteries

    + Author Affiliations
    • The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries (LIBs). However, traditional recycling methods still have limitations because of such huge amounts of spent LIBs. Therefore, we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode (LiCoO2) and anode (graphite) materials of spent LIBs and recycled LiCoPO4/graphite (RLCPG) in $ {\text{L}\text{i}}^{+}/{{\text{P}\text{F}}}_{6}^{-} $ co-de/intercalation dual-ion batteries. The recycle-derived dual-ion batteries of Li/RLCPG show impressive electrochemical performance, with an appropriate discharge capacity of 86.2 mAh·g−1 at 25 mA·g−1 and 69% capacity retention after 400 cycles. Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance, thereby offering an ecofriendly and sustainable way to design novel secondary batteries.
    • loading
    • Supplementary Information-s12613-023-2807-2.docx
    • [1]
      P.K. Jones, U. Stimming, and A.A. Lee, Impedance-based forecasting of lithium-ion battery performance amid uneven usage, Nat. Commun., 13(2022), No. 1, art. No. 4806. doi: 10.1038/s41467-022-32422-w
      [2]
      Z.Y. Gu, J.Z. Guo, J.M. Cao, et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density, Adv. Mater., 34(2022), No. 14, art. No. 2110108. doi: 10.1002/adma.202110108
      [3]
      Q.P. Lu, Z.H. Du, J. Wang, et al., Editorial for special issue on renewable energy conversion, utilization and storage, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1855. doi: 10.1007/s12613-023-2746-y
      [4]
      Z.Z. Yu, G.Q. Zhao, F.L. Ji, et al., Collaboratively enhancing electrochemical properties of LiNi0.83Co0.11Mn0.06O2 through doping and coating of quadrivalent elements, Rare Met., 42(2023), No. 12, p. 4103. doi: 10.1007/s12598-023-02356-3
      [5]
      R. Zhang, C.Y. Wang, P.C. Zou, et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes, Nature, 610(2022), No. 7930, p. 67. doi: 10.1038/s41586-022-05115-z
      [6]
      J. Lin, E.S. Fan, X.D. Zhang, et al., Sustainable upcycling of spent lithium-ion batteries cathode materials: Stabilization by in situ Li/Mn disorder, Adv. Energy Mater., 12(2022), No. 26, art. No. 2201174. doi: 10.1002/aenm.202201174
      [7]
      K. Kim, D. Raymond, R. Candeago, and X. Su, Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control, Nat. Commun., 12(2021), No. 1, art. No. 6554. doi: 10.1038/s41467-021-26814-7
      [8]
      M. Du, J.Z. Guo, S.H. Zheng, et al., Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: Extracting Li from brine, Chin. Chem. Lett., 34(2023), No. 6, art. No. 107706. doi: 10.1016/j.cclet.2022.07.049
      [9]
      K.Y. Zhang, Y.Z. Xu, Y.C. Lin, et al., Enriching redox active sites by interconnected nanowalls-like nickel cobalt phospho-sulfide nanosheets for high performance supercapacitors, Chin. Chem. Lett., 32(2021), No. 11, p. 3553. doi: 10.1016/j.cclet.2021.02.034
      [10]
      Y.T. Xu, S.J. Dai, X.F. Wang, X.W. Wu, Y.G. Guo, and X.X. Zeng, An ion-percolating electrolyte membrane for ultrahigh efficient and dendrite-free lithium metal batteries, InfoMat, 5(2023), No. 12, art. No. e12498. doi: 10.1002/inf2.12498
      [11]
      J.J. Roy, S. Rarotra, V. Krikstolaityte, et al., Green recycling methods to treat lithium-ion batteries e-waste: A circular approach to sustainability, Adv. Mater., 34(2022), No. 25, art. No. 2103346. doi: 10.1002/adma.202103346
      [12]
      M. Xiang, W.X. Fan, W. Lin, et al., Triple kill: Fabrication of composites coming from waste face masks, polystyrene microplastics, graphene, and their electromagnetic interference shielding behaviors, Carbon Neutralization, 2(2023), No. 5, p. 616. doi: 10.1002/cnl2.86
      [13]
      K.D. Du, E.H. Ang, X.L. Wu, and Y.C. Liu, Progresses in sustainable recycling technology of spent lithium-ion batteries, Energy Environ. Mater., 5(2022), No. 4, p. 1012. doi: 10.1002/eem2.12271
      [14]
      J. Wang, Y.F. Yuan, X.H. Rao, et al., Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1859. doi: 10.1007/s12613-023-2666-x
      [15]
      Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897. doi: 10.1007/s12613-022-2571-8
      [16]
      H.Y. Lu, R.L. Hou, S.Y. Chu, H.S. Zhou, and S.H. Guo, Progress on modification strategies of layered lithium-rich cathode materials for high energy lithium-ion batteries, Acta Phys. Chim. Sin., 39(2023), No. 7, art. No. 2211057.
      [17]
      Z.J. Baum, R.E. Bird, X. Yu, and J. Ma, Lithium-ion battery recycling─Overview of techniques and trends, ACS Energy Lett., 7(2022), No. 2, p. 712. doi: 10.1021/acsenergylett.1c02602
      [18]
      C.M. Costa, J.C. Barbosa, R. Gonçalves, H. Castro, F.J. del Campo, and S. Lanceros-Méndez, Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Mater., 37(2021), p. 433. doi: 10.1016/j.ensm.2021.02.032
      [19]
      M. Wasesa, T. Hidayat, D.T. Andariesta, et al., Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain: A hybrid simulation approach, J. Clean. Prod., 379(2022), art. No. 134625. doi: 10.1016/j.jclepro.2022.134625
      [20]
      R.C. Xu, L.H. Jiang, N. Duan, et al., Research on microstructure of membrane-slime layer on lead-based anode surface in zinc hydrometallurgy by combining μ-XRF with mm-XRF, J. Clean. Prod., 379(2022), art. No. 134568. doi: 10.1016/j.jclepro.2022.134568
      [21]
      X.T. Wang, Z.Y. Gu, E.H. Ang, X.X. Zhao, X.L. Wu, and Y.C. Liu, Prospects for managing end-of-life lithium-ion batteries: Present and future, Interdiscip. Mater., 1(2022), No. 3, p. 417. doi: 10.1002/idm2.12041
      [22]
      T. Zhong, H.Y. Zhang, M.C. Song, et al., FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2270. doi: 10.1007/s12613-023-2669-7
      [23]
      Y.L. Heng, Z.Y. Gu, J.Z. Guo, and X.L. Wu, Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries, Acta Phys. Chim. Sin., 37(2021), No. 3, art. No. 2005013.
      [24]
      L. Cassayre, B. Guzhov, M. Zielinski, and B. Biscans, Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review, Renewable Sustainable Energy Rev., 170(2022), art. No. 112983. doi: 10.1016/j.rser.2022.112983
      [25]
      Y.H. Miao, S.Y. Qi, G. Chen, et al., Efficient removal of As, Cu and Cd and synthesis of photo-catalyst from Cu-smelting waste acid through sulfide precipitation by biogenic gaseous H2S produced by anaerobic membrane bioreactor, Chem. Eng. J., 451(2023), art. No. 138096. doi: 10.1016/j.cej.2022.138096
      [26]
      H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p.1715. doi: 10.1007/s12613-021-2366-3
      [27]
      K.D. Du, Y.F. Meng, X.X. Zhao, et al., A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery, Sci. China Mater., 65(2022), No. 3, p. 637. doi: 10.1007/s40843-021-1772-6
      [28]
      J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
      [29]
      T. Wang, H.M. Luo, Y.C. Bai, J.L. Li, I. Belharouak, and S. Dai, Direct recycling of spent NCM cathodes through ionothermal lithiation, Adv. Energy Mater., 10(2020), No. 30, art. No. 2001204. doi: 10.1002/aenm.202001204
      [30]
      B. Xu, P. Dong, J.G. Duan, D. Wang, X.S. Huang, and Y.J. Zhang, Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping, Ceram. Int., 45(2019), No. 9, p. 11792. doi: 10.1016/j.ceramint.2019.03.057
      [31]
      X.Q. Meng, H.B. Cao, J. Hao, P.G. Ning, G.J. Xu, and Z. Sun, Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 5797. doi: 10.1021/acssuschemeng.7b03880
      [32]
      S.H. Zheng, X.T. Wang, Z.Y. Gu, J.Z. Guo, X.L. Wu, and H.Y. Xu, Advances and challenges on recycling the electrode and electrolyte materials in spent lithium-ion batteries, Mater. Lab, 1(2022), No. 4, art. No. 220036. doi: 10.54227/mlab.20220036
      [33]
      Z.Y. Gu, J.Z. Guo, X.X. Zhao, et al., High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat, 3(2021), No. 6, p. 694. doi: 10.1002/inf2.12184
      [34]
      M.C. Guo, W. Tang, Y. Hong, et al., Self-carbonization of soluble organic cathodes enables stable Na-ion batteries, Sci. China Mater., 66(2023), No. 7, p. 2621. doi: 10.1007/s40843-022-2405-6
      [35]
      Y. Yang, J.Z. Guo, Z.Y. Gu, et al., Effective recycling of the whole cathode in spent lithium ion batteries: From the widely used oxides to high-energy/stable phosphates, ACS Sustainable Chem. Eng., 7(2019), No. 14, p. 12014. doi: 10.1021/acssuschemeng.9b00526
      [36]
      M. Du, K.D. Du, J.Z. Guo, et al., Direct reuse of oxide scrap from retired lithium-ion batteries: Advanced cathode materials for sodium-ion batteries, Rare Met., 42(2023), No. 5, p. 1603. doi: 10.1007/s12598-022-02230-8
      [37]
      J.L. Yang, X.X. Zhao, W.H. Li, et al., Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries, eScience, 2(2022), No. 1, p. 95. doi: 10.1016/j.esci.2021.11.001
      [38]
      K.K. Jena, A. AlFantazi, and A.T. Mayyas, Efficient and cost-effective hybrid composite materials based on thermoplastic polymer and recycled graphite, Chem. Eng. J., 430(2022), art. No. 132667. doi: 10.1016/j.cej.2021.132667
      [39]
      Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
      [40]
      N.J. Zhang, W.J. Deng, Z.X. Xu, and X.L. Wang, Upcycling of spent LiCoO2 cathodes via nickel- and manganese-doping, Carbon Energy, 5(2023), No. 1, art. No. e231. doi: 10.1002/cey2.231
      [41]
      J.X. Zhang, P.F. Wang, P.X. Bai, et al., Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode, Adv. Mater., 34(2022), No. 8, art. No. 2108353. doi: 10.1002/adma.202108353
      [42]
      J.Z. Guo, H.X. Zhang, Z.Y. Gu, et al., Heterogeneous NASICON-type composite as low-cost, high-performance cathode for sodium-ion batteries, Adv. Funct. Mater., 32(2022), No. 52, art. No. 2209482. doi: 10.1002/adfm.202209482
      [43]
      J.Y. Wu and C.J. Tsai, Qualitative modeling of the electrolyte oxidation in long-term cycling of LiCoPO4 for high-voltage lithium-ion batteries, Electrochim. Acta, 368(2021), art. No. 137585. doi: 10.1016/j.electacta.2020.137585
      [44]
      N. Priyadharsini, S. Shanmugapriya, P.R. Kasturi, S. Surendran, and R.K. Selvan, Morphology-dependent electrochemical properties of sol-gel synthesized LiCoPO4 for aqueous hybrid capacitors, Electrochim. Acta, 289(2018), p. 516. doi: 10.1016/j.electacta.2018.08.086
      [45]
      Y. Wang, J.Y. Qiu, Z.B. Yu, et al., AlF3-modified LiCoPO4 for an advanced cathode towards high energy lithium-ion battery, Ceram. Int., 44(2018), No. 2, p. 1312. doi: 10.1016/j.ceramint.2017.08.084
      [46]
      X.R. Yang, C.W. Wang, P.F. Yan, et al., Pushing lithium cobalt oxides to 4.7V by lattice-matched interfacial engineering, Adv. Energy Mater., 12(2022), No. 23, art. No. 2200197. doi: 10.1002/aenm.202200197
      [47]
      H.J. Liang, Z.Y. Gu, X.X. Zhao, et al., Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries, Angew. Chem. Int. Ed., 60(2021), No. 51, p. 26837. doi: 10.1002/anie.202112550

    Catalog


    • /

      返回文章
      返回