留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(5)

数据统计

分享

计量
  • 文章访问数:  107
  • HTML全文浏览量:  42
  • PDF下载量:  12
  • 被引次数: 0
Haonan Si, Xuan Zhao, Qingliang Liao, and Yue Zhang, Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2808-1
Cite this article as:
Haonan Si, Xuan Zhao, Qingliang Liao, and Yue Zhang, Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2808-1
引用本文 PDF XML SpringerLink
研究论文

ZnO纳米结构的设计与钙钛矿光吸收调制



文章亮点

  • (1) 系统研究了光刻工艺参数对图案化纳米结构的影响规律。
  • (2) 构建高度可调且密度可控的高质量图案化ZnO阵列。
  • (3) 阐明了纳米结构与光伏器件性能的构效关系。
  • 光刻技术是一种关键的微纳加工技术,可以实现微纳尺度的精确制造,在电子、信息、能源、催化等领域发挥着重要的作用。本文旨在构建高质量的图案化氧化锌纳米结构,通过优化光刻工艺参数,成功制备了线形和孔洞排列的氧化锌纳米棒阵列。图案化氧化锌阵列高度可调且密度可控,其三维空间结构与大比表面积增加了光捕获能力与电荷输运性能,有助于实现钙钛矿太阳能电池的高效能量转换。光刻工艺的有效管理对于设计和制造具有出色性能的复杂纳米结构和器件提供重要指导。
  • Research Article

    Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation

    + Author Affiliations
    • Lithography is a pivotal micro/nanomanufacturing technique, facilitating performance enhancements in an extensive array of devices, encompassing sensors, transistors, and photovoltaic devices. The key to creating highly precise, multiscale-distributed patterned structures is the precise control of the lithography process. Herein, high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography. By optimizing these parameters, ZnO nanorod arrays with line/hole arrangements are successfully prepared. Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which achieve highly efficient energy conversion in perovskite solar cells. The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.
    • loading
    • Supplementary Information-s12613-023-2808-1.docx
    • [1]
      X.H. Wang, X. Dai, H. Wang, J. Wang, et al., All-water etching-free electron beam lithography for on-chip nanomaterials, ACS Nano, 17(2023), No. 5, p. 4933. doi: 10.1021/acsnano.2c12387
      [2]
      P.P. Zhang, G.L. Yang, F. Li, J.B. Shi, and H.Z. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes, Nat. Commun., 13(2022), No. 1, art. No. 6713. doi: 10.1038/s41467-022-34453-9
      [3]
      Z.M. Chai, A. Childress, and A.A. Busnaina, Directed assembly of nanomaterials for making nanoscale devices and structures: Mechanisms and applications, ACS Nano, 16(2022), No. 11, p. 17641. doi: 10.1021/acsnano.2c07910
      [4]
      B.Y. Wen, J.Y. Wang, T.L. Shen, et al., Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution, Light Sci. Appl., 11(2022), No. 1, art. No. 235. doi: 10.1038/s41377-022-00918-1
      [5]
      A. Capitaine, M. Bochet-Modaresialam, P. Poungsripong, et al., Nanoparticle imprint lithography: From nanoscale metrology to printable metallic grids, ACS Nano, 17(2023), No. 10, p. 9361. doi: 10.1021/acsnano.3c01156
      [6]
      B.B. Jin, Y. Hong, Z.Q. Li, et al., Ice-assisted electron-beam lithography for halide perovskite optoelectronic nanodevices, Nano Energy, 102(2022), art. No. 107692. doi: 10.1016/j.nanoen.2022.107692
      [7]
      D. Chen, Y. Wang, H. Zhou, et al., Current and future trends for polymer micro/nanoprocessing in industrial applications, Adv. Mater., 34(2022), No. 52, art. No. e2200903. doi: 10.1002/adma.202200903
      [8]
      S.F. Liu, Z.W. Hou, L.H. Lin, et al., 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding, Science, 377(2022), No. 6610, p. 1112. doi: 10.1126/science.abo5345
      [9]
      M. Luitz, M. Lunzer, A. Goralczyk, et al., High resolution patterning of an organic–inorganic photoresin for the fabrication of platinum microstructures, Adv. Mater., 33(2021), No. 37, art. No. 2101992. doi: 10.1002/adma.202101992
      [10]
      D. Barcons Ruiz, H. Herzig Sheinfux, R. Hoffmann, et al., Engineering high quality graphene superlattices via ion milled ultra-thin etching masks, Nat. Commun., 13(2022), No. 1, art. No. 6926. doi: 10.1038/s41467-022-34734-3
      [11]
      A. Sharstniou, S. Niauzorau, A. L. Hardison, et al., Roughness Suppression in electrochemical nanoimprinting of Si for applications in silicon photonics, Adv. Mater., 34(2022), No. 43, . art. No. 2206608. doi: 10.1002/adma.202206608
      [12]
      J.W. Lee and S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications, Nano Micro Lett., 15(2023), No. 1, art. No. 184. doi: 10.1007/s40820-023-01154-x
      [13]
      Y.Y. Wang, I. Fedin, H. Zhang, and D.V. Talapin, Direct optical lithography of functional inorganic nanomaterials, Science, 357(2017), No. 6349, p. 385. doi: 10.1126/science.aan2958
      [14]
      H.N. Si, Z. Kang, X. Cheng, Z.M. Bai and Y. Zhang, Application of patterned ZnO in energy devices, Chin. J. Eng., 39(2017), No.No. 7, p. 973.
      [15]
      X. Chen, P. Lin, X.Q. Yan, et al., Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells, ACS Appl. Mater. Interfaces, 7(2015), No. 5, p. 3216. doi: 10.1021/am507836v
      [16]
      H.N. Si, Q.L. Liao, Z. Zhang, Y et al., An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability, Nano Energy, 22(2016), p. 223. doi: 10.1016/j.nanoen.2016.02.025
      [17]
      H.N. Si, X. Zhao, Z. Zhang, Q.L. Liao, and Y. Zhang, Low-temperature electron-transporting materials for perovskite solar cells: Fundamentals, progress, and outlook, Coord. Chem. Rev., 500(2024), art. No. 215502. doi: 10.1016/j.ccr.2023.215502
      [18]
      Z.B. Que, L. Chu, S.B. Zhai, Y.F. Feng, et al., Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280. doi: 10.1007/s12613-021-2361-8
      [19]
      K.M. Deng and L. Li, Optical design in perovskite solar cells, Small Methods, 4(2020), No. 6, art. No. 1900150. doi: 10.1002/smtd.201900150
      [20]
      J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
      [21]
      W.F. Liu, J.B. Wang, X.Z. Xu, C.Z. Zhao, X.B. Xu, and P.S. Weiss, Single-step dual-layer photolithography for tunable and scalable nanopatterning, ACS Nano, 15(2021), No. 7, p. 12180. doi: 10.1021/acsnano.1c03703
      [22]
      S.M. Aghaei, N. Yasrebi, and B. Rashidian, Characterization of line nanopatterns on positive photoresist produced by scanning near-field optical microscope, J. Nanomater., 2015(2015), No. 1, art. No. 936876. doi: 10.1155/2015/936876
      [23]
      M. Striccoli, Photolithography based on nanocrystals, Science, 357(2017), No. 6349, p. 353. doi: 10.1126/science.aan8430
      [24]
      W. Wang, P. Pfeiffer, and L. Schmidt-Mende, Direct patterning of metal chalcogenide semiconductor materials, Adv. Funct. Mater., 30(2020), No. 27, art. No. 2002685. doi: 10.1002/adfm.202002685
      [25]
      S.H. Luo, B.H. Hoff, S.A. Maier, and J.C. de Mello, Scalable fabrication of metallic nanogaps at the sub-10 nm level, Adv. Sci., 8(2021), No. 24, art. No. 2102756. doi: 10.1002/advs.202102756
      [26]
      H.H. Li, M.L. Liu, J.J. Zhao, et al., Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors, Small, 16(2020), No. 42, art. No. 2004136. doi: 10.1002/smll.202004136
      [27]
      Z. Kang, H.N. Si, S.C. Zhang, et al., Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting, Adv. Funct. Mater., 29(2019), No. 15, art. No. 1808032. doi: 10.1002/adfm.201808032
      [28]
      H.N. Si, Z. Kang, Q.L. Liao, et al., Design and tailoring of patterned ZnO nanostructures for energy conversion applications, Sci. China Mater., 60(2017), No. 9, p. 793. doi: 10.1007/s40843-017-9105-3
      [29]
      L.Q. Tian, Q. Xin, C. Zhao, et al., Nanoarray structures for artificial photosynthesis, Small, 17(2021), No. 38, art. No. 2006530. doi: 10.1002/smll.202006530
      [30]
      C.Z. Xu, S.C. Zhang, W.Q. Fan, et al., Pushing the limit of open-circuit voltage deficit via modifying buried interface in CsPbI3 perovskite solar cells, Adv. Mater., 35(2023), No. 7, art. No. 2207172. doi: 10.1002/adma.202207172
      [31]
      M. Yue, J. Su, P. Zhao, et al., Optimizing the performance of CsPbI3-Based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering, Nano Micro Lett., 11(2019), No. 1, art. No. 91. doi: 10.1007/s40820-019-0320-y
      [32]
      W.H. Wang and L.M. Qi, Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1807275. doi: 10.1002/adfm.201807275
      [33]
      Q.C. He, H.M. Zhang, S.Q. Han, et al., Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells, Mater. Sci. Semicond. Process., 148(2022), art. No. 106787. doi: 10.1016/j.mssp.2022.106787
      [34]
      S.Q. Deng, B.E. Tan, A.S.R. Chesman, et al., Back-contact perovskite solar cell fabrication via microsphere lithography, Nano Energy, 102(2022), art. No. 107695. doi: 10.1016/j.nanoen.2022.107695

    Catalog


    • /

      返回文章
      返回