Cite this article as: |
Ying Gao, Ce Zhang, Jiazhen Zhang, and Xin Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1426-1436. https://doi.org/10.1007/s12613-023-2809-0 |
张策 E-mail: zhangce@ustb.edu.cn
路新 E-mail: luxin@ustb.edu.cn
[1] |
D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844. doi: 10.1016/j.actamat.2012.10.043
|
[2] |
H.Z. Niu, H.R. Zhang, Q.Q. Sun, and D.L. Zhang, Breaking through the strength-ductility trade-off dilemma in powder metallurgy Ti–6Al–4V titanium alloy, Mater. Sci. Eng. A, 754(2019), p. 361. doi: 10.1016/j.msea.2019.03.089
|
[3] |
N. Soro, H. Attar, X.H. Wu, and M.S. Dargusch, Investigation of the structure and mechanical properties of additively manufactured Ti–6Al–4V biomedical scaffolds designed with a Schwartz primitive unit-cell, Mater. Sci. Eng. A, 745(2019), p. 195. doi: 10.1016/j.msea.2018.12.104
|
[4] |
P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374. doi: 10.1007/s12613-019-1922-6
|
[5] |
T.L. Zhang, Z.H. Huang, T. Yang, et al. , In situ design of advanced titanium alloy with concentration modulations by additive manufacturing, Science, 374(2021), No. 6566, p. 478. doi: 10.1126/science.abj3770
|
[6] |
J.Y. Zhang, B.N. Qian, Y.J. Wu, et al., A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys, J. Mater. Sci. Technol., 74(2021), p. 21. doi: 10.1016/j.jmst.2020.10.004
|
[7] |
Y. Chong, T. Tsuru, B.Q. Guo, R. Gholizadeh, K. Inoue, and N. Tsuji, Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen, Acta Mater., 240(2022), art. No. 118356. doi: 10.1016/j.actamat.2022.118356
|
[8] |
V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson, Industrial application of titanium hydride powder, Met. Powder Rep., 72(2017), No. 1, p. 30. doi: 10.1016/j.mprp.2016.02.051
|
[9] |
L.P. Zhu, Y. Pan, Y.J. Liu, et al., Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 697. doi: 10.1007/s12613-021-2371-6
|
[10] |
S.M. El-Soudani, K.O. Yu, E.M. Crist, et al., Optimization of blended-elemental powder-based titanium alloy extrusions for aerospace applications, Metall. Mater. Trans. A, 44(2013), No. 2, p. 899. doi: 10.1007/s11661-012-1437-5
|
[11] |
Y.F. Luo, Y.H. Xie, W. Zeng, J.M. Liang, and D.L. Zhang, Microstructure and mechanical properties of Ti–6Al–4V rods fabricated by powder compact extrusion of TiH2/Al60V40 powder blend, Metall. Mater. Trans. A, 50(2019), No. 4, p. 1643. doi: 10.1007/s11661-019-05116-0
|
[12] |
Z. Wang, Y.N. Tan, and N. Li, Powder metallurgy of titanium alloys: A brief review, J. Alloys Compd., 965(2023), art. No. 171030. doi: 10.1016/j.jallcom.2023.171030
|
[13] |
D.D. Zhang, L.Y. Bao, Q. Li, J.P. Han, and Y.Y. Chen, Microstructure evolution and properties of powder metallurgy Ti43Al9V0.3Y alloy sheets at different rolling temperatures, Mater. Sci. Eng. A, 866(2023), art. No. 144685. doi: 10.1016/j.msea.2023.144685
|
[14] |
J.K. Hong, C.H. Lee, J.H. Kim, J.T. Yeom, and N.K. Park, Ti strip properties fabricated by powder rolling method, Surf. Rev. Lett., 17(2010), No. 2, p. 229. doi: 10.1142/S0218625X1001393X
|
[15] |
S. Chikosha, T.C. Shabalala, and H.K. Chikwanda, Effect of particle morphology and size on roll compaction of Ti-based powders, Powder Technol., 264(2014), p. 310. doi: 10.1016/j.powtec.2014.05.033
|
[16] |
G.M.D. Cantin, P.L. Kean, N.A. Stone, et al., Innovative consolidation of titanium and titanium alloy powders by direct rolling, Powder Metall., 54(2011), No. 3, p. 188. doi: 10.1179/174329011X13045076771795
|
[17] |
W.H. Peter, T. Muth, W. Chen, et al., Titanium sheet fabricated from powder for industrial applications, JOM, 64(2012), No. 5, p. 566. doi: 10.1007/s11837-012-0309-1
|
[18] |
D. Mangabhai, K. Araci, M.K. Akhtar, N.A. Stone, and D. Cantin, Processing of titanium powder into consolidated parts & sheet, Key Eng. Mater., 551(2013), p. 57. doi: 10.4028/www.scientific.net/KEM.551.57
|
[19] |
G.M.D. Cantin and M.A. Gibson, Titanium sheet fabrication from powder, [in] M. Qian and F.H.S. Froes, eds., Titanium Powder Metallurgy, Amsterdam, Elsevier, (2015), p. 383.
|
[20] |
K.A. Gogaev, V.S. Voropaev, Y.N. Podrezov, Y.I. Yevych, and A.Y. Koval, The effect of compacting rolling on the properties of titanium powder mill products, Powder Metall. Met. Ceram., 55(2017), No. 11-12, p. 633. doi: 10.1007/s11106-017-9849-9
|
[21] |
K.A. Gogaev, V.S. Voropaev, Y.N. Podrezov, et al., Mechanical and fatigue properties of powder titanium strips, obtained by asymmetric rolling, Powder Metall. Met. Ceram., 56(2017), No. 1-2, p. 53. doi: 10.1007/s11106-017-9871-y
|
[22] |
J. O’Flynn and S.F. Corbin, Effects of powder material and process parameters on the roll compaction, sintering and cold rolling of titanium sponge, Powder Metall., 62(2019), No. 5, p. 307. doi: 10.1080/00325899.2019.1651505
|
[23] |
R.J. Xu, B. Liu, Z.Q. Yan, F. Chen, W.M. Guo, and Y. Liu, Low-cost and high-strength powder metallurgy Ti–Al–Mo–Fe alloy and its application, J. Mater. Sci., 54(2019), No. 18, p. 12049. doi: 10.1007/s10853-019-03734-y
|
[24] |
A. Govender, C. Bemont, and S. Chikosha, Sintering high green density direct powder rolled titanium strips, in argon atmosphere, Metals, 11(2021), No. 6, art. No. 936. doi: 10.3390/met11060936
|
[25] |
Y. Zhou, F. Yang, C.G. Chen, et al., Mechanical property enhancement of high-plasticity powder metallurgy titanium with a high oxygen concentration, J. Alloys Compd., 885(2021), art. No. 161006. doi: 10.1016/j.jallcom.2021.161006
|
[26] |
F.C. Qiu, T. Cheng, Y.C. Song, et al., Achieving superior performance in powder-metallurgy near-β titanium alloy by combining hot rolling and rapid heat treatment followed by aging, J. Mater. Sci. Technol., 171(2024), p. 24. doi: 10.1016/j.jmst.2023.06.034
|
[27] |
Y. Chong, R.P. Zhang, M.S. Hooshmand, et al., Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al, Nat. Commun., 12(2021), No. 1, art. No. 6158. doi: 10.1038/s41467-021-26374-w
|
[28] |
Z.Q. Li, K. Han, H.L. Hou, B.Y. Wang, and Z.H. Hu, Effect of hydrogen on diffusion bonding behavior and mechanism of Ti–6Al–4V alloy, Rare Met. Mater. Eng., 43(2014), No. 2, p. 306. doi: 10.1016/S1875-5372(14)60064-3
|
[29] |
H.P. Wu, H.L. Peng, X.F. Li, and J. Chen, Effect of hydrogen addition on diffusion bonding behavior of Ti-55 alloy, Mater. Sci. Eng. A, 739(2019), p. 244. doi: 10.1016/j.msea.2018.10.032
|
[30] |
W.C. Xu, D.B. Shan, Z.L. Wang, G.P. Yang, L. Yan, and D.C. Kang, Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy, Trans. Nonferrous Met. Soc. China, 17(2007), No. 6, p. 1205. doi: 10.1016/S1003-6326(07)60250-7
|
[31] |
Q.J. Sun and X. Xie, Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing, Mater. Sci. Eng. A, 724(2018), p. 493. doi: 10.1016/j.msea.2018.03.109
|
[32] |
Z.C. Sun, J. Zhang, H. Yang, and H.L. Wu, Effect of workpiece size on microstructure evolution of different regions for TA15 Ti-alloy isothermal near-β forging by local loading, J. Mater. Process. Technol., 222(2015), p. 234. doi: 10.1016/j.jmatprotec.2015.02.039
|
[33] |
Y.G. Zhou, W.D. Zeng, and H.Q. Yu, An investigation of a new near-beta forging process for titanium alloys and its application in aviation components, Mater. Sci. Eng. A, 393(2005), No. 1-2, p. 204. doi: 10.1016/j.msea.2004.10.016
|
[34] |
D.M. Huang, H.L. Wang, X. Chen, Y. Chen, and H. Guo, Influence of forging process on microstructure and mechanical properties of large section Ti–6.5Al–1Mo–1V–2Zr alloy bars, Trans. Nonferrous Met. Soc. China, 23(2013), No. 8, p. 2276. doi: 10.1016/S1003-6326(13)62729-6
|
[35] |
Z.C. Sun and H. Yang, Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 184. doi: 10.1016/j.msea.2009.05.058
|
[36] |
W.J. Zhou, Z.C. Sun, S.P. Zuo, H. Yang, and X.G. Fan, Shape optimization of initial billet for TA15 Ti-alloy complex components preforming, Rare Met. Mater. Eng., 40(2011), No. 6, p. 951. doi: 10.1016/S1875-5372(11)60039-8
|
[37] |
S.Z. Zhang, J.W. Liu, Q.Y. Zhao, C.J. Zhang, L. Bolzoni, and F. Yang, Microstructure characterization of a high strength Ti–6Al–4V alloy prepared from a powder mixture of TiH2 and 60Al40V masteralloy powders, J. Alloys Compd., 818(2020), art. No. 152815. doi: 10.1016/j.jallcom.2019.152815
|
[38] |
X.X. Ye, H. Imai, J.H. Shen, et al., Dynamic recrystallization behavior and strengthening-toughening effects in a near-α Ti–xSi alloy processed by hot extrusion, Mater. Sci. Eng. A, 684(2017), p. 165. doi: 10.1016/j.msea.2016.12.054
|
[39] |
Y.X. Li, P.F. Gao, J.Y. Yu, S. Jin, S.Q. Chen, and M. Zhan, Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation, J. Mater. Sci. Technol., 98(2022), p. 72. doi: 10.1016/j.jmst.2021.05.008
|
[40] |
Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, and Y.T. Zhu, Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient, Scripta. Mater., 174(2020), p. 19. doi: 10.1016/j.scriptamat.2019.08.022
|
[41] |
X.Z. Ma, Z.L. Xiang, T. Li, et al., Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1596. doi: 10.1007/s12613-021-2248-8
|
[42] |
L. Lei, Q.Y. Zhao, C. Wu, et al., Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy, J. Mater. Sci. Technol., 99(2022), p. 101. doi: 10.1016/j.jmst.2021.04.069
|
[43] |
W. Long, S. Zhang, Y.L. Liang, and M.G. Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 296. doi: 10.1007/s12613-020-1996-1
|