留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(4)

数据统计

分享

计量
  • 文章访问数:  171
  • HTML全文浏览量:  69
  • PDF下载量:  15
  • 被引次数: 0
Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2810-7
Cite this article as:
Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2810-7
引用本文 PDF XML SpringerLink
研究论文

基于核壳结构多孔空心碳球复合硒正极铝离子电池性能研究



  • 通讯作者:

    焦树强    E-mail: sjiao@ustb.edu.cn

文章亮点

  • (1) 在400°C下成功合成了核壳结构多孔空心碳球复合硒正极材料Se@C@TiN
  • (2) 系统地研究了Se@C@TiN作为铝离子电池正极材料的电化学性能
  • (3) Se@C@TiN正极材料首圈放电比容量为377 mAh·g−1,循环200圈后,放电比容量保存在86 mAh·g−1
  • 目前,国际上对铝离子电池的研究主要集中在高能量密度、长循环寿命正极材料的开发。与目前研究较多的石墨类正极材料相比,硒基于氧化还原反应的四电子转移理论比容量高达1357 mAh·g−1,具有较高的放电平台(Se:~1.5 V)。但是现有的研究发现,铝–硒电池存在活性物质本征导电性差,中间产物易在电解质中溶解扩散导致比容量衰减的问题。本文通过半牺牲模板法以核壳结构SiO2/间苯二酚甲醛为模板,通过水热法制备核壳SiO2/间苯二酚甲醛@TiO2复合材料,在N2气氛下煅烧处理得到三维SiO2@C@TiN,去除SiO2后得到了三维结构的核壳C@TiN空心碳球,最后在400°C下成功负载硒得到了核壳结构多孔空心碳球复合硒正极材料Se@C@TiN。其与铝负极组成的Al-Se@C@TiN电池在1000 mA·g−1电流密度下,首圈放电比容量为377 mAh·g−1,循环200圈后,放电比容量保存在86 mAh·g−1。性能较未改善的硒正极有所提高,归因于核壳结构多孔空心碳球的高导电性和Se@C@TiN独特的结构。
  • Research Article

    Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries

    + Author Affiliations
    • Incorporating a selenium (Se) positive electrode into aluminum (Al)-ion batteries is an effective strategy for improving the overall battery performance. However, the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products. In this work, we aim to harness the advantages of Se while reducing its limitations by preparing a core–shell mesoporous carbon hollow sphere with a titanium nitride (C@TiN) host to load 63.9wt% Se as the positive electrode material for Al–Se batteries. Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN, the obtained core–shell mesoporous carbon hollow spheres coated with Se (Se@C@TiN) display superior utilization of the active material and remarkable cycling stability. As a result, Al–Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g−1 at a current density of 1000 mA·g−1 while maintaining a discharge specific capacity of 86.0 mAh·g−1 over 200 cycles. This improved cycling performance is ascribed to the high electrical conductivity of the core–shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
    • loading
    • [1]
      S.M. He, D. Zhang, X. Zhang, S.Q. Liu, W.Q. Chu, and H.J. Yu, Rechargeable Al-chalcogen batteries: Status, challenges, and perspectives, Adv. Energy Mater., 11(2021), No. 29, art. No. 2100769. doi: 10.1002/aenm.202100769
      [2]
      L. Yao, S.L. Ju, and X.B. Yu, Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries, J. Mater. Chem. A, 9(2021), No. 31, p. 16878. doi: 10.1039/D1TA03465K
      [3]
      X.F. Zhang and S.Q. Jiao, Modified Al negative electrode for stable high-capacity Al–Te batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 896. doi: 10.1007/s12613-022-2410-y
      [4]
      Y.F. Ai, S.C. Wu, K.Y. Wang, et al., Three-dimensional molybdenum diselenide helical nanorod arrays for high-performance aluminum-ion batteries, ACS Nano, 14(2020), No. 7, p. 8539. doi: 10.1021/acsnano.0c02831
      [5]
      Y. Chen, K.L. Zhang, N. Li, et al., Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 33. doi: 10.1007/s12613-022-2416-5
      [6]
      C.L. Zheng, J.G. Tu, S.Q. Jiao, M.Y. Wang, and Z. Wang, Sb2Te3 hexagonal nanosheets as high-capacity positive materials for rechargeable aluminum batteries, ACS Appl. Energy Mater., 3(2020), No. 12, p. 12635. doi: 10.1021/acsaem.0c02553
      [7]
      H.P. Lei, J.G. Tu, W.L. Song, H.D. Jiao, X. Xiao, and S.Q. Jiao, A dual-protection strategy using CMK-3 coated selenium and modified separators for high-energy Al–Se batteries, Inorg. Chem. Front., 8(2021), No. 4, p. 1030. doi: 10.1039/D0QI01302A
      [8]
      H.P. Lei, S.Q. Jiao, J.G. Tu, et al., Modified separators for rechargeable high-capacity selenium-aluminium batteries, Chem. Eng. J., 385(2020), art. No. 123452. doi: 10.1016/j.cej.2019.123452
      [9]
      Z.Y. Li, X.X. Wang, X.X. Li, and W.M. Zhang, Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al-Se batteries, Chem. Eng. J., 400(2020), art. No. 126000. doi: 10.1016/j.cej.2020.126000
      [10]
      T. Zhang, T.H. Cai, W. Xing, et al., A rechargeable 6-electron Al–Se battery with high energy density, Energy Storage Mater., 41(2021), p. 667. doi: 10.1016/j.ensm.2021.06.041
      [11]
      W.R. Lv, G.H. Wu, X.X. Li, W.M. Zhang, and Z.Y. Li, Advanced structure selenium nanosphere@Ti3C2@graphene oxide with dual-channel and multiple protection strategies for Al–Se batteries, J. Power Sources, 564(2023), art. No. 232827. doi: 10.1016/j.jpowsour.2023.232827
      [12]
      X.D. Huang, Y. Liu, C. Liu, J. Zhang, O. Noonan, and C.Z. Yu, Rechargeable aluminum-selenium batteries with high capacity, Chem. Sci., 9(2018), No. 23, p. 5178. doi: 10.1039/C8SC01054D
      [13]
      R. Wang, D.G. Wang, Y. Dong, et al., Recent progress of advanced carbon-based cathode in sodium-selenium batteries, J. Alloys Compd., 952(2023), art. No. 169980. doi: 10.1016/j.jallcom.2023.169980
      [14]
      X.S. Zhao, L.C. Yin, T. Zhang, et al., Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries, Nano Energy, 49(2018), p. 137. doi: 10.1016/j.nanoen.2018.04.045
      [15]
      J.M. Sun, Z.Z. Du, Y.H. Liu, et al., State-of-the-art and future challenges in high energy lithium–selenium batteries, Adv. Mater., 33(2021), No. 10, art. No. 2003845. doi: 10.1002/adma.202003845
      [16]
      S.A. Abbas, M. Forghani, S. Anh, S.W. Donne, and K.D. Jung, Carbon hollow spheres as electrochemical capacitors: Mechanistic insights, Energy Storage Mater., 24(2020), p. 550. doi: 10.1016/j.ensm.2019.06.034
      [17]
      Y.Q. Kong, A.K. Nanjundan, Y. Liu, H. Song, X.D. Huang, and C.Z. Yu, Modulating ion diffusivity and electrode conductivity of carbon Nanotube@Mesoporous carbon fibers for high performance aluminum–selenium batteries, Small, 15(2019), No. 51, art. No. 1904310. doi: 10.1002/smll.201904310
      [18]
      Z.Y. Li, J. Liu, X.G. Huo, J.L. Li, and F.Y. Kang, Novel one-dimensional hollow carbon nanotubes/selenium composite for high-performance Al-Se batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 49, p. 45709. doi: 10.1021/acsami.9b16597
      [19]
      J.J. Zhang, J.W. Liang, Y.C. Zhu, D.H. Wei, L. Fan, and Y.T. Qian, Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries, J. Mater. Chem. A, 2(2014), No. 8, p. 2728. doi: 10.1039/c3ta13228e
      [20]
      X.Y. Wu, X. Chen, H.Y. Wu, et al., Encapsulation of Se in dual-wall hollow carbon spheres: Physical confinement and chemisorption for superior Na–Se and K–Se batteries, Carbon, 187(2022), p. 354. doi: 10.1016/j.carbon.2021.11.013
      [21]
      Y.J. Hong, K.C. Roh, and Y.C. Kang, Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li–Se batteries, J. Mater. Chem. A, 6(2018), No. 9, p. 4152. doi: 10.1039/C7TA11112F
      [22]
      Z.M. Cui, C.X. Zu, W.D. Zhou, A. Manthiram, and J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries, Adv. Mater., 28(2016), No. 32, p. 6926. doi: 10.1002/adma.201601382
      [23]
      H.P. Lei, J.G. Tu, S.Q. Li, et al., Graphene-encapsulated selenium@polyaniline nanowires with three-dimensional hierarchical architecture for high-capacity aluminum–selenium batteries, J. Mater. Chem. A, 10(2022), No. 28, p. 15146. doi: 10.1039/D2TA04210J
      [24]
      Z. Li, J.T. Zhang, B.Y. Guan, and X.W. Lou, Mesoporous Carbon@Titanium nitride hollow spheres as an efficient SeS2 host for advanced Li–SeS2 batteries, Angew. Chem. Int. Ed., 56(2017), No. 50, p. 16003. doi: 10.1002/anie.201709176
      [25]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [26]
      H.T. Liu, Z.H. Huang, J.T. Huang, et al., Unique single-crystal TiN1 + x nano-rods: Synthesis, electrical transportation, and electric field effect conductivity, Mater. Des., 111(2016), p. 541. doi: 10.1016/j.matdes.2016.09.028
      [27]
      M. Jia, C.P. Mao, Y.B. Niu, et al., A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications, RSC Adv., 5(2015), No. 116, p. 96146. doi: 10.1039/C5RA19000B
      [28]
      T. Liu, L.Y. Zhang, W. You, and J.G. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor, Small, 14(2018), No. 12, art. No. 1702407. doi: 10.1002/smll.201702407
      [29]
      L.C. Zeng, X. Wei, J.Q. Wang, Y. Jiang, W.H. Li, and Y. Yu, Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries, J. Power Sources, 281(2015), p. 461. doi: 10.1016/j.jpowsour.2015.02.029
      [30]
      Y.J. Han, X. Yue, Y.S. Jin, X.D. Huang, and P.K. Shen, Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst, J. Mater. Chem. A, 4(2016), No. 10, p. 3673. doi: 10.1039/C5TA09976E
      [31]
      P.H. Yang, D.L. Chao, C.R. Zhu, et al., Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures, Adv. Sci., 3(2016), No. 6, art. No. 1500299. doi: 10.1002/advs.201500299
      [32]
      Z. Huang, W.L. Song, Y.J. Liu, et al., Stable quasi-solid-state aluminum batteries, Adv. Mater., 34(2022), No. 8, art. No. 2104557. doi: 10.1002/adma.202104557
      [33]
      Y.X. Guo, W. Wang, H.P. Lei, M.Y. Wang, and S.Q. Jiao, Alternate storage of opposite charges in multisites for high-energy-density Al–MOF batteries, Adv. Mater., 34(2022), No. 13, art. No. 2110109. doi: 10.1002/adma.202110109
      [34]
      W. Wang, B. Jiang, C. Qian, et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage, Adv. Mater., 30(2018), No. 30, art. No. 1801812. doi: 10.1002/adma.201801812
      [35]
      G. Han, Z.G. Chen, Y.C. Zou, J. Drennan, and J. Zou, Long wavelength emissions of Se4+-doped In2O3 hierarchical nanostructures, J. Mater. Chem. C, 2(2014), No. 32, p. 6529. doi: 10.1039/C4TC01025F

    Catalog


    • /

      返回文章
      返回