留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  457
  • HTML全文浏览量:  229
  • PDF下载量:  35
  • 被引次数: 0
Yifan Song, Xihai Li, Jinliang Xu, Kai Zhang, Yaozong Mao, Hong Yan, Huiping Li, and Rongshi Chen, Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg–Zn–Gd–Ca–Mn alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2208-2220. https://doi.org/10.1007/s12613-023-2812-5
Cite this article as:
Yifan Song, Xihai Li, Jinliang Xu, Kai Zhang, Yaozong Mao, Hong Yan, Huiping Li, and Rongshi Chen, Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg–Zn–Gd–Ca–Mn alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2208-2220. https://doi.org/10.1007/s12613-023-2812-5
引用本文 PDF XML SpringerLink
研究论文

退火处理对温轧Mg-Zn-Gd-Ca-Mn合金微观组织及力学性能的影响



  • 通讯作者:

    闫宏    E-mail: yanhong5871@163.com

    陈荣石    E-mail: rschen@imr.ac.cn

文章亮点

  • (1) 薄轧板的晶粒尺寸和相应的力学性能对退火温度极为敏感
  • (2) 退火温度影响第二相的数量,从而影响晶粒尺寸和力学性能
  • (3) 可以通过温轧和退火来控制强−塑性平衡
  • 针对AZ31等传统镁合金易形成基面织构、室温塑性差的问题,利用稀土和钙等溶质原子的独特作用,设计了一种多元微合金化高塑性Mg–1.8Zn–0.8Gd–0.1Ca–0.2Mn材料,研究了退火工艺对温轧板材晶粒尺寸、第二相、织构和室温力学性能的影响规律,以期通过退火调控合金组织和织构,为工业生产工艺提供指导。结果表明退火温度对组织和性能影响显著:轧制态合金内存在少量较大尺寸的块状相和沿着轧制方向的长串相,以及晶粒内部细小的球状和棒状颗粒相;随退火温度的增加,晶粒尺寸先减少后增加,第二相形貌、数量和尺寸发生变化,其中在350°C时发生完全再结晶,450°C晶内颗粒相消失,晶粒尺寸突增;300~350°C为完全再结晶阶段,呈现最优的强塑性综合力学性能,轧向和横向的屈服强度分别为182.1 MPa和176.9 MPa,抗拉强度为271.1 MPa和275.8 MPa,伸长率分别达到27.4%和32.3%。此外,该合金中仍然存在一些较大尺寸的相,影响其力学性能尤其是塑性,该材料还有提升空间。
  • Research Article

    Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg–Zn–Gd–Ca–Mn alloys

    + Author Affiliations
    • The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature. To address these problems, a multi-micro-alloyed high-plasticity Mg–1.8Zn–0.8Gd–0.1Ca–0.2Mn (wt%) alloy was developed using the unique role of rare earth and Ca solute atoms. In addition, the influence of the annealing process on the grain size, second phase, texture, and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity magnesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters. The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content: there are small amounts of larger-sized block and long string phases along the rolling direction (RD), as well as several spherical and rodlike particle phases inside the grains. With increasing annealing temperature, the grain size decreases and then increases, and the morphology, number, and size of the second phase also change correspondingly. The particle phase within the grains vanishes at 450°C, and the grain size increases sharply. In the full recrystallization stage at 300–350°C, the optimum strength–plasticity comprehensive mechanical properties are presented, with yield strengths of 182.1 and 176.9 MPa, tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction (TD), and elongation values of 27.4% and 32.3%, respectively. Moreover, there are still some larger-sized phases in the alloy that influence its mechanical properties, which offers room for improvement.
    • loading
    • [1]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [2]
      T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys, 7(2019), No. 3, p. 536. doi: 10.1016/j.jma.2019.08.001
      [3]
      F.S. Pan and B. Jiang, Development and application of plastic processing technologies of magnesium alloys, Acta Metall. Sin., 57(2021), No. 11, p. 1362.
      [4]
      S.V. S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, and S. Singh, The role and significance of Magnesium in modern day research-A review, J. Magnesium Alloys, 10(2022), No. 1, p. 1. doi: 10.1016/j.jma.2021.05.012
      [5]
      B. Lei, Z.H. Dong, Y. Yang, et al., Influence of Zn on the microstructure and mechanical properties of Mg–Gd–Zr alloy, Mater. Sci. Eng. A, 843(2022), art. No. 143136. doi: 10.1016/j.msea.2022.143136
      [6]
      L.K. Singh, A. Bhadauria, A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg–9Al alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 901. doi: 10.1007/s12613-017-1476-4
      [7]
      J.H. Lee, B.J. Kwak, T. Kong, S.H. Park, and T. Lee, Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains, J. Magnesium Alloys, 7(2019), No. 3, p. 381. doi: 10.1016/j.jma.2019.06.002
      [8]
      F. Abouhilou, A. Hanna, H. Azzeddine, and D. Bradai, Microstructure and texture evolution of AZ31 Mg alloy after uniaxial compression and annealing, J. Magnesium Alloys, 7(2019), No. 1, p. 124. doi: 10.1016/j.jma.2018.11.003
      [9]
      H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, and W.J. Ding, In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg–10Gd–3Y–0.5Zr (wt.%) at 250°C, Mater. Charact., 116(2016), p. 8. doi: 10.1016/j.matchar.2016.04.001
      [10]
      R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, and S. Suwas, Ductility enhancement in Mg–0.2%Ce alloys, Acta Mater., 161(2018), p. 246. doi: 10.1016/j.actamat.2018.09.023
      [11]
      A. Javaid and F. Czerwinski, Effect of hot rolling on microstructure and properties of the ZEK100 alloy, J. Magnesium Alloys, 7(2019), No. 1, p. 27. doi: 10.1016/j.jma.2019.02.001
      [12]
      C. He, M. Yuan, B. Jiang, et al., Improving the isotropy and formability of extruded Mg–2Gd–1Zn (wt.%) alloy sheet by introducing an ellipse texture, Mater. Sci. Eng. A, 836(2022), art. No. 142699. doi: 10.1016/j.msea.2022.142699
      [13]
      M.G. Jiang, C. Xu, H. Yan, et al., Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion, Acta Mater., 157(2018), p. 53. doi: 10.1016/j.actamat.2018.07.014
      [14]
      B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Current issues in magnesium sheet alloys: Where do we go from here?, Scripta Mater., 84-85(2014), p. 1. doi: 10.1016/j.scriptamat.2014.04.017
      [15]
      H.L. Ding, X.B. Shi, Y.Q. Wang, G.P. Cheng, and S. Kamado, Texture weakening and ductility variation of Mg–2Zn alloy with CA or RE addition, Mater. Sci. Eng. A, 645(2015), p. 196. doi: 10.1016/j.msea.2015.08.025
      [16]
      Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet, Mater. Sci. Eng. A, 674(2016), p. 459. doi: 10.1016/j.msea.2016.07.049
      [17]
      Z.R. Zeng, M.Z. Bian, S.W. Xu, et al., Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1388. doi: 10.1007/s12613-021-2365-4
      [18]
      L.W. Zheng, Y.P. Zhuang, J.J. Li, et al., Mechanical properties of Mg–Gd–Zr alloy by Nd addition combined with hot extrusion, Trans. Nonferrous Met. Soc. China, 32(2022), No. 6, p. 1866. doi: 10.1016/S1003-6326(22)65914-4
      [19]
      Z.M. Yan, X.B. Li, J. Zheng, et al., Microstructure evolution, texture and mechanical properties of a Mg–Gd–Y–Zn–Zr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity: The influence of passes and processing route, J. Magnesium Alloys, 9(2021), No. 3, p. 964. doi: 10.1016/j.jma.2020.06.016
      [20]
      K.K. Alaneme and E.A. Okotete, Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments, J. Magnesium Alloys, 5(2017), No. 4, p. 460. doi: 10.1016/j.jma.2017.11.001
      [21]
      M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedström, Microstructure, texture, and strain-hardening behavior of extruded Mg–Gd–Zn alloys, Mater. Sci. Eng. A, 772(2020), art. No. 138833. doi: 10.1016/j.msea.2019.138833
      [22]
      B. Lei, B. Jiang, H.B. Yang, et al., Effect of Nd addition on the microstructure and mechanical properties of extruded Mg-Gd-Zr alloy, Mater. Sci. Eng. A, 816(2021), art. No. 141320. doi: 10.1016/j.msea.2021.141320
      [23]
      D.D. Zhang, Q. Yang, B.S. Li, et al., Improvement on both strength and ductility of Mg−Sm−Zn−Zr casting alloy via Yb addition, J. Alloys Compd., 805(2019), p. 811. doi: 10.1016/j.jallcom.2019.07.094
      [24]
      Y.X. Niu, Z.T. Song, Q.C. Le, J. Hou, and F.K. Ning, Excellent mechanical properties obtained by low temperature extrusion based on Mg–2Zn–1Al alloy, J. Alloys Compd., 801(2019), p. 415. doi: 10.1016/j.jallcom.2019.05.297
      [25]
      C.J. Che, L.R. Cheng, L.B. Tong, Z.Y. Cai, and H.J. Zhang, The effect of Gd and Zn additions on microstructures and mechanical properties of Mg–4Sm–3Nd–Zr alloy, J. Alloys Compd., 706(2017), p. 526. doi: 10.1016/j.jallcom.2017.02.269
      [26]
      F. Mouhib, R. Pei, B. Erol, F. Sheng, S. Korte-Kerzel, and T. Al-Samman, Synergistic effects of solutes on active deformation modes, grain boundary segregation and texture evolution in Mg–Gd–Zn alloys, Mater. Sci. Eng. A, 847(2022), art. No. 143348. doi: 10.1016/j.msea.2022.143348
      [27]
      X.Q. Zeng, Y.W. Chen, J.Y. Wang, and W.J. Ding, Research progress of high-performance rare earth magnesium alloys, Chin. J. Nonferrous Met., 31(2021), No. 11, p. 2963.
      [28]
      W.X. Fan, Y. Bai, G.Y. Li, X.Y. Chang, and H. Hao, Enhanced mechanical properties and formability of hot-rolled Mg–Zn–Mn alloy by Ca and Sm alloying, Trans. Nonferrous Met. Soc. China, 32(2022), No. 4, p. 1119. doi: 10.1016/S1003-6326(22)65860-6
      [29]
      I.H. Jung, M. Sanjari, J. Kim, and S. Yue, Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg–RE alloys, Scripta Mater., 102(2015), p. 1. doi: 10.1016/j.scriptamat.2014.12.010
      [30]
      P. Liu, H.T. Jiang, Z.X. Cai, Q. Kang, and Y. Zhang, The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg–Zn alloys, J. Magnesium Alloys, 4(2016), No. 3, p. 188. doi: 10.1016/j.jma.2016.07.001
      [31]
      L. Li, C.C. Zhang, H. Lv, C.R. Liu, Z.Z. Wen, and J.W. Jiang, Texture development and tensile properties of Mg–Yb binary alloys during hot extrusion and subsequent annealing, J. Magnesium Alloys, 10(2022), No. 1, p. 249. doi: 10.1016/j.jma.2021.05.001
      [32]
      J. Zhao, B. Jiang, J. Xu, W.J. He, G.S. Huang, and F.S. Pan, The influence of Gd on the recrystallisation, texture and mechanical properties of Mg alloy, Mater. Sci. Eng. A, 839(2022), art. No. 142867. doi: 10.1016/j.msea.2022.142867
      [33]
      W.X. Li, L.Y. Wang, B.J. Zhou, C.L. Liu, and X.Q. Zeng, Grain-scale deformation in a Mg–0.8 wt% Y alloy using crystal plasticity finite element method, J. Mater. Sci. Technol., 35(2019), No. 10, p. 2200. doi: 10.1016/j.jmst.2019.04.030
      [34]
      W.X. Wu, L. Jin, F.H. Wang, et al., Microstructure and texture evolution during hot rolling and subsequent annealing of Mg–1Gd alloy, Mater. Sci. Eng. A, 582(2013), p. 194. doi: 10.1016/j.msea.2013.05.080
      [35]
      S.W. Lee, S.H. Kim, W.K. Jo, et al., Twinning and slip behaviors and microstructural evolutions of extruded Mg–1Gd alloy with rare-earth texture during tensile deformation, J. Alloys Compd., 791(2019), p. 700. doi: 10.1016/j.jallcom.2019.03.316
      [36]
      Q.F. Wang, K. Liu, Z.H. Wang, S.B. Li, and W.B. Du, Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys containing W-phase, J. Alloys Compd., 602(2014), p. 32. doi: 10.1016/j.jallcom.2014.02.027
      [37]
      L.Z. Liu, X.H. Chen, F.S. Pan, et al., Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg–Zn–Zr–Ce alloys, Mater. Sci. Eng. A, 669(2016), p. 259. doi: 10.1016/j.msea.2016.05.098
      [38]
      L. Liu, X.J. Zhou, S.L. Yu, et al., Effects of heat treatment on mechanical properties of an extruded Mg–4.3Gd–3.2Y–1.2Zn–0.5Zr alloy and establishment of its Hall–Petch relation, J. Magnesium Alloys, 10(2022), No. 2, p. 501. doi: 10.1016/j.jma.2020.09.023
      [39]
      Y. Zhang, H.T. Jiang, Q. Kang, Y.J. Wang, Y.G. Yang, and S.W. Tian, Microstructure evolution and mechanical property of Mg–3Al alloys with addition of Ca and Gd during rolling and annealing process, J. Magnesium Alloys, 8(2020), No. 3, p. 769. doi: 10.1016/j.jma.2019.11.015
      [40]
      F. Guo, L. Liu, Y.L. Ma, L.Y. Jiang, D.F. Zhang, and F.S. Pan, Mechanism of phase refinement and its effect on mechanical properties of a severely deformed dual-phase Mg–Li alloy during annealing, Mater. Sci. Eng. A, 772(2020), art. No. 138792. doi: 10.1016/j.msea.2019.138792
      [41]
      I. Basu, K.G. Pradeep, C. Mießen, L.A. Barrales-Mora, and T. Al-Samman, The role of atomic scale segregation in designing highly ductile magnesium alloys, Acta Mater., 116(2016), p. 77. doi: 10.1016/j.actamat.2016.06.024
      [42]
      H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, and E.H. Han, Twins, shear bands and recrystallization of a Mg–2.0%Zn–0.8%Gd alloy during rolling, Scripta Mater., 64(2011), No. 2, p. 141. doi: 10.1016/j.scriptamat.2010.09.029
      [43]
      H. Yan, R.S. Chen, N. Zheng, J. Luo, S. Kamado, and E.H. Han, Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg–2Zn–xGd sheets, J. Magnesium Alloys, 1(2013), No. 1, p. 23. doi: 10.1016/j.jma.2013.02.003
      [44]
      H. Yan, X.H. Shao, H.P. Li, R.S. Chen, H.Z. Cui, and E.H. Han, Synergization of ductility and yield strength in a dilute quaternary Mg–Zn–Gd–Ca alloy through texture modification and Guinier–Preston zone, Scripta Mater., 207(2022), art. No. 114257. doi: 10.1016/j.scriptamat.2021.114257
      [45]
      C.B. Wei, H. Yan, C. Chen, X.H. Du, and R.S. Chen, Microstructure, texture and mechanical properties of Mg–0.8 Zn–0.3 Gd–0.5 Ca alloy sheets, Mater. Sci. Forum, 852(2016), p. 171. doi: 10.4028/www.scientific.net/MSF.852.171
      [46]
      C.B. Wei, H. Yan, X.H. Du, J. Luo, and R.S. Chen, Effects of Ca concentration on microstructures and properties of rolled Mg–Zn–Gd–Ca alloys, Chin. J. Nonferrous Met., 26(2016), No. 9, p. 1858.
      [47]
      J. Zhao, B. Jiang, Y. Yuan, et al., Influence of Zn addition on the microstructure, tensile properties and work-hardening behavior of Mg–1Gd alloy, Mater. Sci. Eng. A, 772(2020), art. No. 138779. doi: 10.1016/j.msea.2019.138779
      [48]
      H.L. Ding, P. Zhang, G.P. Cheng, and S. Kamado, Effect of calcium addition on microstructure and texture modification of Mg rolled sheets, Trans. Nonferrous Met. Soc. China, 25(2015), No. 9, p. 2875. doi: 10.1016/S1003-6326(15)63913-9
      [49]
      J. Zhao, B. Jiang, Y. Song, et al., Simultaneous improvement of strength and ductility by Mn addition in extruded Mg–Gd–Zn alloy, Trans. Nonferrous Met. Soc. China, 32(2022), No. 5, p. 1460. doi: 10.1016/S1003-6326(22)65886-2
      [50]
      X.Y. Liu, L.W. Lu, K. Sheng, Y. Xiang, and Z.Q. Wu, Effect of pre-compression on microstructure evolution of AQ80 magnesium alloy in forward extrusion and twist deformation, JOM, 71(2019), No. 12, p. 4726. doi: 10.1007/s11837-019-03836-7
      [51]
      B. Che, L.W. Lu, Y. Xiang, M. Ma, J. Luo, and L.F. Liu, Grain refinement mechanism of AZ31 magnesium alloy processed by expansion-continuous shear deformation, Chin. J. Nonferrous Met., 31(2021), No. 12, p. 3531.
      [52]
      J.M. Meier, J.S. Miao, S.M. Liang, et al., Phase equilibria and microstructure investigation of Mg–Gd–Y–Zn alloy system, J. Magnesium Alloys, 10(2022), No. 3, p. 689. doi: 10.1016/j.jma.2021.09.019
      [53]
      K. Liu, J.X. Liu, S.B. Li, Z.H. Wang, W.B. Du, and Q.F. Wang, Effects of secondary phases on texture and mechanical properties of as-extruded Mg–Zn–Er alloys, Trans. Nonferrous Met. Soc. China, 28(2018), No. 5, p. 890. doi: 10.1016/S1003-6326(18)64722-3
      [54]
      H.G. Shou, L.Y. He, J. Zheng, T.J. Li, L.H. Xia, and D.D. Yin, The effect of grain size on deformation modes and deformation heterogeneity in a rolled Mg–Zn–Ca alloy, J. Mater. Res. Technol., 22(2023), p. 1723. doi: 10.1016/j.jmrt.2022.12.017
      [55]
      Y. Zhang, H.T. Jiang, Y.J. Wang, and Z. Xu, Effects of second-phase particles on microstructure evolution in Mg–2Zn based magnesium alloys during annealing treatment, Metals, 10(2020), No. 6, art. No. 777. doi: 10.3390/met10060777
      [56]
      C.J. Wang, J.W. Kang, K.K. Deng, K.B. Nie, W. Liang, and W.G. Li, Microstructure and mechanical properties of Mg–4Zn–xGd (x = 0, 0.5, 1, 2) alloys, J. Magnesium Alloys, 8(2020), No. 2, p. 441. doi: 10.1016/j.jma.2019.06.005

    Catalog


    • /

      返回文章
      返回