留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  443
  • HTML全文浏览量:  224
  • PDF下载量:  31
  • 被引次数: 0
Levie Mweene, Gilsang Hong, Hee-Eun Jeong, Hee-won Kang, and Hyunjung Kim, Insights into the changes in the surface properties of goethite with Ni in the lattice in the presence of salicylhydroxamic acid: Experimental and density functional theory studies, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 665-677. https://doi.org/10.1007/s12613-023-2813-4
Cite this article as:
Levie Mweene, Gilsang Hong, Hee-Eun Jeong, Hee-won Kang, and Hyunjung Kim, Insights into the changes in the surface properties of goethite with Ni in the lattice in the presence of salicylhydroxamic acid: Experimental and density functional theory studies, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 665-677. https://doi.org/10.1007/s12613-023-2813-4
引用本文 PDF XML SpringerLink
研究论文

晶格中含镍针铁矿的表面性质在水杨基羟肟酸的作用下演变:实验和密度泛函理论研究



    * 共同第一作者
  • 通讯作者:

    Hyunjung Kim    E-mail: kshjkim@hanyang.ac.kr

  • 对针铁矿(GT)和晶格中含镍针铁矿(GTN) 在水杨基羟肟酸(SA)存在条件下的表面化学变化进行了对比实验和理论分析。结果表明,在100 g SA存在的情况下,GTN和GT的浮选回收率随pH的增加而增加,在pH 为8.3时,两种矿物的浮选回收率均达到最大值98.9%,PH超过该值时,回收率则逐渐降低;除pH = 8.3时外,GTN的回收率均略高于GT。这是因为存在共价键、封闭壳键和常规氢键形成的GTN∙∙∙SA的络合能(−883.87 kJ⋅mol−1)比GT∙∙SA的络合能(−604.23 kJ⋅mol−1)更高。相对于GT, GTN对SA的吸附性更好,这是由于GTN中会形成的π孔,进一步促进捕收剂与矿物之间的相互作用。因此, GT晶格中Ni的存在分别促进和减少了SA在矿物上的吸附和解吸。
  • Research Article

    Insights into the changes in the surface properties of goethite with Ni in the lattice in the presence of salicylhydroxamic acid: Experimental and density functional theory studies

    + Author Affiliations
    • Comparative experiments and theoretical analysis of the surface chemistry changes of goethite (GT) and goethite containing Ni (GTN) in the lattice in the presence of salicylhydroxamic acid (SA) were performed. It was revealed that in the presence of 100 g·t−1 of SA, the flotation recovery of GTN and GT increased with increasing pH, achieving a maximum recovery of 98.9% for both minerals at pH 8.3 and decreasing beyond that pH, with GTN having a slightly higher recovery than GT, except at pH 8.3. This was further confirmed by the higher complexation energies of GTN∙∙∙SA (−883.87 kJ·mol−1) compared with GT∙∙∙SA (−604.23 kJ·mol−1) resulting from covalent, closed-shell, and conventional hydrogen bonding. The higher adsorption of SA onto GTN relative to GT was due to the formation of a π-hole in GTN, thereby promoting a higher interaction of the collector with the mineral. Thus, the presence of Ni in the GT lattice improves and decreases the adsorption and desorption of SA onto and from the mineral, respectively, compared with those onto and from GT.
    • loading
    • Supplementary Information-s12613-023-2813-4.docx
    • [1]
      G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Comparison of the effects of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion of goethitic bauxite, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1705. doi: 10.1007/s12613-023-2628-3
      [2]
      S. Ilyas, R.R. Srivastava, H. Kim, N. Ilyas, and R. Sattar, Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process, Sep. Purif. Technol., 232(2020), art. No. 115971. doi: 10.1016/j.seppur.2019.115971
      [3]
      L. Mweene, A. Gomez-Flores, H.E. Jeong, S. Ilyas, and H. Kim, Challenges and future in Ni laterite ore enrichment: A critical review, Miner. Process. Extr. Metall. Rev., (2023), p. 1.
      [4]
      O. Skurikhina, M. Senna, M. Fabián, et al., A sustainable reaction process for phase pure LiFeSi2O6 with goethite as an iron source, Ceram. Int., 46(2020), No. 10, p. 14894. doi: 10.1016/j.ceramint.2020.03.016
      [5]
      A.J. Pinto, N. Sanchez-Pastor, and R. Santos Jorge, Electrochemical reactions driving Mn-enrichment in FeMn supergene ores: A mineralogical perspective, Chem. Geol., 630(2023), art. No. 121488. doi: 10.1016/j.chemgeo.2023.121488
      [6]
      M.L. Jackson, Soil Chemical Analysis : Advanced Course, UW-Madison Libraries parallel press, Madison, 2005.
      [7]
      L.C. Hsu, Y.M. Tzou, M.S. Ho, et al., Preferential phosphate sorption and Al substitution on goethite, Environ. Sci. Nano, 7(2020), No. 11, p. 3497. doi: 10.1039/C9EN01435G
      [8]
      X.W. Zhang, L.J. Zhang, Y. Liu, et al., Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms, Environ. Pollut., 262(2020), art. No. 114184. doi: 10.1016/j.envpol.2020.114184
      [9]
      K. Iwasaki and T. Yamamura, Whisker-like goethite nanoparticles containing cobalt synthesized in a wet process, Mater. Trans., 43(2002), No. 8, p. 2097. doi: 10.2320/matertrans.43.2097
      [10]
      K. Inouye, K. Ichimura, K. Kaneko, and T. Ishikawa, The effect of copper(II) on the formation of γ-FeOOH, Corros. Sci., 16(1976), No. 8, p. 507. doi: 10.1016/S0010-938X(76)80028-5
      [11]
      W.J. Wan, H.Y. Wu, Z.W. Wang, et al., Tailoring electronic structure of Ni–Fe oxide by V incorporation for effective electrocatalytic water oxidation, Appl. Surf. Sci., 611(2023), art. No. 155732. doi: 10.1016/j.apsusc.2022.155732
      [12]
      National Center for Biotechnology Information, PubChem Compound Summary for Salicylhydroxamic Acid (CID 66644 ) [2023-07-06]. https://pubchem.ncbi.nlm.nih.gov/compound/Salicylhydroxamic-acid.
      [13]
      Y.C. Miao, S.M. Wen, Q. Zuo, Z.H. Shen, Q. Zhang, and Q.C. Feng, Co-adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability, Sep. Purif. Technol., 308(2023), art. No. 122954. doi: 10.1016/j.seppur.2022.122954
      [14]
      Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector, Sep. Purif. Technol., 178(2017), p. 193. doi: 10.1016/j.seppur.2017.01.053
      [15]
      M.J. Tian, Z.Y. Gao, B. Ji, et al., Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant, Minerals, 8(2018), No. 8, art. No. 316. doi: 10.3390/min8080316
      [16]
      W.Q. Qin, L.Y. Ren, Y.B. Xu, P.P. Wang, and X.H. Ma, Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system, J. Cent. South Univ., 19(2012), No. 6, p. 1711. doi: 10.1007/s11771-012-1197-9
      [17]
      W.Q. Qin, Y.B. Xu, H. Liu, L.Y. Ren, and C.R. Yang, Flotation and surface behavior of cassiterite with salicylhydroxamic acid, Ind. Eng. Chem. Res., 50(2011), No. 18, p. 10778. doi: 10.1021/ie200800d
      [18]
      S.M. Cao, Y.J. Cao, Y.F. Liao, and Z.L. Ma, Depression mechanism of strontium ions in bastnaesite flotation with salicylhydroxamic acid as collector, Minerals, 8(2018), No. 2, art. No. 66. doi: 10.3390/min8020066
      [19]
      W.L. Xiong, J. Deng, K.L. Zhao, W.Q. Wang, Y.H. Wang, and D.Z. Wei, Bastnaesite, barite, and calcite flotation behaviors with salicylhydroxamic acid as the collector, Minerals, 10(2020), No. 3, art. No. 282. doi: 10.3390/min10030282
      [20]
      W.J. Zhao, D.W. Liu, and Q.C. Feng, Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability, Miner. Eng., 152(2020), art. No. 106373. doi: 10.1016/j.mineng.2020.106373
      [21]
      H. Liu, W.Q. Zhao, J.H. Zhai, et al., Activation mechanism of lead(II) to ilmenite flotation using salicylhydroxamic acid as collector, Minerals, 10(2020), No. 6, art. No. 567. doi: 10.3390/min10060567
      [22]
      Y.C. Miao, S.M. Wen, Q.C. Feng, and R.P. Liao, Enhanced adsorption of salicylhydroxamic acid on ilmenite surfaces modified by Fenton and its effect on floatability, Colloids Surf. A: Physicochem. Eng. Aspects, 626(2021), art. No. 127057. doi: 10.1016/j.colsurfa.2021.127057
      [23]
      Q.Y. Meng, Z.T. Yuan, L.X. Li, J.W. Lu, and J.C. Yang, Modification mechanism of lead ions and its response to wolframite flotation using salicylhydroxamic acid, Powder Technol., 366(2020), p. 477. doi: 10.1016/j.powtec.2020.02.049
      [24]
      U. Schwertmann, P. Cambier, and E. Murad, Properties of goethites of varying crystallinity, Clays Clay Miner., 33(1985), No. 5, p. 369. doi: 10.1346/CCMN.1985.0330501
      [25]
      T. Hiemstra, W.H. van Riemsdijk, and G.H. Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach I. Model description and evaluation of intrinsic reaction constants, Journal of colloid and interface science, J. Colloid Interface Sci., 133(1989), No. 1, p. 91. doi: 10.1016/0021-9797(89)90284-1
      [26]
      M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al. , Gaussian 16, Revision C.01, Wallingford CT, 2016.
      [27]
      C. Adamo, M. Cossi, G. Scalmani, and V. Barone, Accurate static polarizabilities by density functional theory: Assessment of the PBE0 model, Chem. Phys. Lett., 307(1999), No. 3-4, p. 265. doi: 10.1016/S0009-2614(99)00515-1
      [28]
      C. Franchini, V. Bayer, R. Podloucky, J. Paier, and G. Kresse, Density functional theory study of MnO by a hybrid functional approach, Phys. Rev. B, 72(2005), No. 4, art. No. 045132. doi: 10.1103/PhysRevB.72.045132
      [29]
      I. Barlocco, L.A. Cipriano, G. Di Liberto, and G. Pacchioni, Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: Role of the functional, Adv. Theory Simul., 6(2023), No. 10, art. No. 2200513. doi: 10.1002/adts.202200513
      [30]
      J.Y. Tao, Q.Y. Zhang, and T.F. Liu, Polaron formation and transport in Bi2WO6 studied by DFT+ U and hybrid PBE0 functional approaches, Phys. Chem. Chem. Phys., 24(2022), No. 37, p. 22918. doi: 10.1039/D2CP02987A
      [31]
      B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, and T.L. Windus, New basis set exchange: An open, up-to-date resource for the molecular sciences community, J. Chem. Inf. Model., 59(2019), No. 11, p. 4814. doi: 10.1021/acs.jcim.9b00725
      [32]
      K.L. Schuchardt, B.T. Didier, T. Elsethagen, et al., Basis set exchange: A community database for computational sciences, J. Chem. Inf. Model., 47(2007), No. 3, p. 1045. doi: 10.1021/ci600510j
      [33]
      F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 7(2005), No. 18, p. 3297. doi: 10.1039/b508541a
      [34]
      P.P. Poier, O. Adjoua, L. Lagardère, and J.P. Piquemal, Generalized many-body dispersion correction through random-phase approximation for chemically accurate density functional theory, J. Phys. Chem. Lett., 14(2023), No. 6, p. 1609. doi: 10.1021/acs.jpclett.2c03722
      [35]
      Y.H. Shao, Y. Mei, D. Sundholm, and V.R.I. Kaila, Benchmarking the performance of time-dependent density functional theory methods on biochromophores, J. Chem. Theory Comput., 16(2020), No. 1, p. 587. doi: 10.1021/acs.jctc.9b00823
      [36]
      R.F.W. Bader, Atoms in molecules, Acc. Chem. Res., 18(1985), No. 1, p. 9. doi: 10.1021/ar00109a003
      [37]
      W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph., 14(1996), No. 1, p. 33. doi: 10.1016/0263-7855(96)00018-5
      [38]
      M. Alvarez, E.E. Sileo, and E.H. Rueda, Structure and reactivity of synthetic Co-substituted goethites, Am. Mineral., 93(2008), No. 4, p. 584. doi: 10.2138/am.2008.2608
      [39]
      S.J. Bai, J. Li, Y.X. Bi, J.Q. Yuan, S.M. Wen, and Z. Ding, Adsorption of sodium oleate at the microfine hematite/aqueous solution interface and its consequences for flotation, Int. J. Min. Sci. Technol., 33(2023), No. 1, p. 105. doi: 10.1016/j.ijmst.2022.09.012
      [40]
      H. Wang, W.Z. Wang, and W.J. Jin, σ-hole bond vs π-hole bond: A comparison based on halogen bond, Chem. Rev., 116(2016), No. 9, p. 5072. doi: 10.1021/acs.chemrev.5b00527
      [41]
      A. Bauzá, T.J. Mooibroek, and A. Frontera, The bright future of unconventional σ/π-hole interactions, ChemPhysChem, 16(2015), No. 12, p. 2496. doi: 10.1002/cphc.201500314
      [42]
      L. Mweene, G. Prasad Khanal, J. Kawala, and S. Subramanian, Investigations into the flotation of molybdenite in the presence of chalcopyrite using (3S, 4S, 5S, 6R)-3, 4, 5, 6-tetrahydroxyoxane-2-carboxylate acid as a novel selective depressant: An experimental and theoretical perspective, J. Mol. Liq., 368(2022), art. No. 120661. doi: 10.1016/j.molliq.2022.120661
      [43]
      K.S. Maiti, Ultrafast N–H vibrational dynamics of hydrogen-bonded cyclic amide reveal by 2DIR spectroscopy, Chem. Phys., 515(2018), p. 509. doi: 10.1016/j.chemphys.2018.10.003
      [44]
      M.R.C. Fernandes, X.M. Huang, H.C.L. Abbenhuis, and E.J.M. Hensen, Lignin oxidation with an organic peroxide and subsequent aromatic ring opening, Int. J. Biol. Macromol., 123(2019), p. 1044. doi: 10.1016/j.ijbiomac.2018.11.105
      [45]
      S. Loganathan and S. Sankaran, Surface chemical and selective flocculation studies on iron oxide and silica suspensions in the presence of xanthan gum, Miner. Eng., 160(2021), art. No. 106668. doi: 10.1016/j.mineng.2020.106668
      [46]
      E.E. Platero, D. Scarano, A. Zecchina, G. Meneghini, and R. De Franceschi, Highly sintered nickel oxide: Surface morphology and FTIR investigation of CO adsorbed at low temperature, Surf. Sci., 350(1996), No. 1-3, p. 113. doi: 10.1016/0039-6028(95)01076-9
      [47]
      M. Nowsath rifaya, T. Theivasanthi and M. Alagar, Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies, Nanosci. Nanotechnol., 2(2012), No. 5, p. 134. doi: 10.5923/j.nn.20120205.01
      [48]
      T. Lu and F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33(2012), No. 5, p. 580. doi: 10.1002/jcc.22885
      [49]
      H. Weng, Y. Yang, C. Zhang, et al., Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater, Chem. Eng. J., 453(2023), art. No. 139812. doi: 10.1016/j.cej.2022.139812
      [50]
      X.Y. Lu, K.H. Ye, S.Q. Zhang, et al., Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation, Chem. Eng. J., 428(2022), art. No. 131027. doi: 10.1016/j.cej.2021.131027
      [51]
      L.B. Wu, L. Yu, B. McElhenny, et al., Rational design of core-shell-structured CoP x @FeOOH for efficient seawater electrolysis, Appl. Catal. B, 294(2021), art. No. 120256. doi: 10.1016/j.apcatb.2021.120256
      [52]
      P. Politzer, J.S. Murray, and T. Clark, The π-hole revisited, Phys. Chem. Chem. Phys., 23(2021), No. 31, p. 16458. doi: 10.1039/D1CP02602J
      [53]
      J.R. Zhang, Z.X. Wang, S.F. Liu, J.B. Cheng, W.Z. Li, and Q.Z. Li, Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between π-hole and σ-hole, Appl. Organomet. Chem., 33(2019), No. 4, art. No. e4806. doi: 10.1002/aoc.4806
      [54]
      J.R. Zhang, Q.Z. Hu, Q.Z. Li, S. Scheiner, and S.F. Liu, Comparison of σ-hole and π-hole tetrel bonds in complexes of borazine with TH3F and F2TO/H2TO (T = C, Si, Ge), Int. J. Quantum Chem., 119(2019), No. 11, art. No. e25910. doi: 10.1002/qua.25910
      [55]
      P. Politzer, J.S. Murray, and T. Clark, Explicit inclusion of polarizing electric fields in σ- and π-hole interactions, J. Phys. Chem. A, 123(2019), No. 46, p. 10123. doi: 10.1021/acs.jpca.9b08750
      [56]
      T. Hiemstra and W.H. Van Riemsdijk, Fluoride adsorption on goethite in relation to different types of surface sites, J. Colloid Interface Sci., 225(2000), No. 1, p. 94. doi: 10.1006/jcis.1999.6697
      [57]
      C.P. Schulthess and U. Ndu, Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory, PLoS One, 12(2017), No. 5, art. No. e0176743. doi: 10.1371/journal.pone.0176743
      [58]
      A. Ler and R. Stanforth, Evidence for surface precipitation of phosphate on goethite, Environ. Sci. Technol., 37(2003), No. 12, p. 2694. doi: 10.1021/es020773i
      [59]
      K.J. Wang and B.S. Xing, Adsorption and desorption of cadmium by goethite pretreated with phosphate, Chemosphere, 48(2002), No. 7, p. 665. doi: 10.1016/S0045-6535(02)00167-4
      [60]
      U. Koch and P.L.A. Popelier, Characterization of C–H–O hydrogen bonds on the basis of the charge density, J. Phys. Chem., 99(1995), No. 24, p. 9747. doi: 10.1021/j100024a016
      [61]
      S. Jenkins and I. Morrison, The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities, Chem. Phys. Lett., 317(2000), No. 1-2, p. 97. doi: 10.1016/S0009-2614(99)01306-8
      [62]
      S. Emamian, T. Lu, H. Kruse, and H. Emamian, Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory, J. Comput. Chem., 40(2019), No. 32, p. 2868. doi: 10.1002/jcc.26068

    Catalog


    • /

      返回文章
      返回