留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  716
  • HTML全文浏览量:  92
  • PDF下载量:  11
  • 被引次数: 0
Wenwen Han, Hongying Yang,  and Linlin Tong, Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1996-2005. https://doi.org/10.1007/s12613-023-2814-3
Cite this article as:
Wenwen Han, Hongying Yang,  and Linlin Tong, Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1996-2005. https://doi.org/10.1007/s12613-023-2814-3
引用本文 PDF XML SpringerLink
研究论文

黄铁矿和氰化物间的相互作用及黄铁矿氰化尾渣的化学氧化脱氰研究


  • 通讯作者:

    杨洪英    E-mail: yanghy@smm.neu.edu.cn

文章亮点

  • (1) 探明了氰化过程中黄铁矿与氰化物间的相互作用。
  • (2) 探究了黄铁矿氰化尾渣化学氧化脱氰的影响因素并优化了工艺参数。
  • (3) 查明黄铁矿在氰化过程及脱氰过程中的反应机理。
  • 黄金生产过程中氰化提金工艺产生的大量氰化尾渣对环境有严重危害,氰化尾渣的脱氰处理具有重要意义。本文以氰化尾渣中存在的重要矿物黄铁矿为研究对象,对黄铁矿与氰化物间的相互作用及黄铁矿氰化尾渣的脱氰行为进行了分析。研究表明,氰化体系的高pH值、高氰化物浓度和高黄铁矿用量可以促进氰化物与黄铁矿间的相互作用。黄铁矿的氰化反应行为符合伪二级动力学模型。采用亚硫酸钠-空气氧化法对黄铁矿氰化尾渣进行脱氰处理。结果表明,在pH值为11.2、亚硫酸钠用量为22 mg⋅g−1黄铁矿、空气流量为1.46 L⋅min−1的条件下,脱氰反应1 h后总氰化物去除率为83.9%。对黄铁矿样品进行XPS检测分析,发现黄铁矿在氰化过程中生成了Fe(III)化合物和FeSO4。氰化后吸附在黄铁矿表面的氰化物主要以游离氰化物(CN)和亚铁氰化物($ \mathrm{F}\mathrm{e}{\left(\mathrm{C}\mathrm{N}\right)}_{6}^{4-} $)的形式存在,通过亚硫酸钠-空气氧化法均能被有效脱除。在脱氰过程中,空气的通入促进了黄铁矿的氧化,减弱了黄铁矿表面对氰化物的吸附,强化了黄铁矿氰化尾渣中总氰化物的脱除。
  • Research Article

    Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation

    + Author Affiliations
    • The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment. Pyrite is one of the main minerals existing in cyanide residues. In this work, the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed. Results revealed that high pH value, high cyanide concentration, and high pyrite dosage promoted the interaction of cyanide with pyrite. The cyanidation of pyrite was pseudo-second-order with respect to cyanide. The decyanation of pyrite cyanide residue by Na2SO3/air oxidation was performed. The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2, $ {\mathrm{S}\mathrm{O}}_{3}^{2-} $ dosage of 22 mg·g−1, and air flow rate of 1.46 L·min−1. X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(III) and FeSO4 during the cyanidation process. The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide (CN) and ferrocyanide ($ \mathrm{F}\mathrm{e}{\left(\mathrm{C}\mathrm{N}\right)}_{6}^{4-} $), which were effectively removed by Na2SO3/air oxidation. During the decyanation process, air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface. This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.
    • loading
    • [1]
      Z.W. Liu, X.Y. Guo, Q.H. Tian, and L. Zhang, A systematic review of gold extraction: Fundamentals, advancements, and challenges toward alternative lixiviants, J. Hazard. Mater., 440(2022), art. No. 129778. doi: 10.1016/j.jhazmat.2022.129778
      [2]
      Y. Xu, W.S. Li, Q.F. Huang, et al., Long-term degradation characteristics of cyanide in closed monofills and its effects on the environment and human health: Evidence from nine landfill sites in northern China, Sci. Total Environ., 839(2022), art. No. 156269. doi: 10.1016/j.scitotenv.2022.156269
      [3]
      B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Cyanide chemistry and its effect on mineral flotation, Miner. Eng., 66-68(2014), p. 25. doi: 10.1016/j.mineng.2014.06.010
      [4]
      W.W. Han, H.Y. Yang, and L.L. Tong, Cyanide removal for ultrafine gold cyanide residues by chemical oxidation methods, Trans. Nonferrous Met. Soc. China, 32(2022), No. 12, p. 4129. doi: 10.1016/S1003-6326(22)66083-7
      [5]
      C.H. Zhao, D.W. Huang, J.H. Chen, Y.Q. Li, Y. Chen, and W.Z. Li, The interaction of cyanide with pyrite, marcasite and pyrrhotite, Miner. Eng., 95(2016), p. 131. doi: 10.1016/j.mineng.2016.03.015
      [6]
      C. Anning, J.X. Wang, P. Chen, I. Batmunkh, and X.J. Lyu, Determination and detoxification of cyanide in gold mine tailings: A review, Waste Manage. Res., 37(2019), No. 11, p. 1117. doi: 10.1177/0734242X19876691
      [7]
      N. Kuyucak and A. Akcil, Cyanide and removal options from effluents in gold mining and metallurgical processes, Miner. Eng., 50-51(2013), p. 13. doi: 10.1016/j.mineng.2013.05.027
      [8]
      A. Akcil, Destruction of cyanide in gold mill effluents: Biological versus chemical treatments, Biotechnol. Adv., 21(2003), No. 6, p. 501. doi: 10.1016/S0734-9750(03)00099-5
      [9]
      Q. Xiong, S.J. Jiang, R. Fang, et al., An environmental-friendly approach to remove cyanide in gold smelting pulp by chlorination aided and corncob biochar: Performance and mechanisms, J. Hazard. Mater., 408(2021), art. No. 124465. doi: 10.1016/j.jhazmat.2020.124465
      [10]
      M. Kitis, A. Akcil, E. Karakaya, and N.O. Yigit, Destruction of cyanide by hydrogen peroxide in tailings slurries from low bearing sulphidic gold ores, Miner. Eng., 18(2005), No. 3, p. 353. doi: 10.1016/j.mineng.2004.06.003
      [11]
      F. Barriga-Ordonez, F. Nava-Alonso, and A. Uribe-Salas, Cyanide oxidation by ozone in a steady-state flow bubble column, Miner. Eng., 19(2006), No. 2, p. 117. doi: 10.1016/j.mineng.2005.09.001
      [12]
      D. Hewitt, P. Breuer, and C. Jeffery, Cyanide detoxification of gold cyanidation tails and process streams, Miner. Process. Extr. Metall., 121(2012), No. 4, p. 228.
      [13]
      P.L. Breuer and D.M. Hewitt, INCO Cyanide destruction insights from plant reviews and laboratory evaluations, Miner. Process. Extr. Metall., 129(2020), No. 1, p. 104. doi: 10.1179/1743285512Y.0000000020
      [14]
      China Gold Association, T/CGA 013–2019: Method for Chemical Analysis of Cyanide Leaching Residue in Gold Industry⎯Determination of Cyanide Titration and Spectrophotometry Method, 2019.
      [15]
      Ministry of Environmental Protection of the People’s Republic of China, HJ 484–2009: Water Quality⎯Determination of Cyanide⎯Volumetric and Spectrophotometry Method, 2009.
      [16]
      Y.B. Li, Y. Peng, Z.L. Wei, X. Yang, and A.R. Gerson, Crystal face-dependent pyrite oxidation: An electrochemical study, Appl. Surf. Sci., 619(2023), art. No. 156687. doi: 10.1016/j.apsusc.2023.156687
      [17]
      B. Guo, Y.J. Peng, and G. Parker, Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation, Miner. Eng., 92(2016), p. 78. doi: 10.1016/j.mineng.2016.03.003
      [18]
      A.M. Raichur, X.H. Wang, and B.K. Parekh, Quantifying pyrite surface oxidation kinetics by contact angle measurements, Colloids Surf. A: Physicochem. Eng. Aspects, 167(2000), No. 3, p. 245. doi: 10.1016/S0927-7757(99)00512-9
      [19]
      X.M. Qiu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and Q. Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 439. doi: 10.1007/s12613-020-2170-5
      [20]
      R. Fattahi, M. Lashkarbolooki, R. Abedini, and H. Younesi, Analysis of the interfacial tension of cationic imidazolium-based ionic liquid, twin-branched tailed anionic surfactant, and a non-ionic emulsifier in the presence of SiO2 nanoparticle and amphiphilic oleic components using response surface method, J. Mol. Liq., 381(2023), art. No. 121799. doi: 10.1016/j.molliq.2023.121799
      [21]
      H.H. Xue, J.Y. Li, G.B. Zhang, M. Li, B.S. Liu, and C.L. Kang, Hydroxyl radical dominated ibuprofen degradation by UV/percarbonate process: Response surface methodology optimization, toxicity, and cost evaluation, Chemosphere, 329(2023), art. No. 138681. doi: 10.1016/j.chemosphere.2023.138681
      [22]
      R.V. Muralidhar, R.R. Chirumamila, R. Marchant, and P. Nigam, A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources, Biochem. Eng. J., 9(2001), No. 1, p. 17. doi: 10.1016/S1369-703X(01)00117-6
      [23]
      Q.F. Zhao, H.Y. Yang, L.L. Tong, R.P. Jin, and P.C. Ma, Understanding the effect of grinding media on the adsorption mechanism of cyanide to chalcopyrite surface by ToF–SIMS, XPS, contact angle, zeta potential and flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 644(2022), art. No. 128799. doi: 10.1016/j.colsurfa.2022.128799
      [24]
      Y.F. Mu, L.Q. Li, and Y.J. Peng, Surface properties of fractured and polished pyrite in relation to flotation, Miner. Eng., 101(2017), p. 10. doi: 10.1016/j.mineng.2016.11.012
      [25]
      X.L. Zhang, Y.X. Han, P. Gao, Y.J. Li, and Y.S. Sun, Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite, Powder Technol., 360(2020), p. 1028. doi: 10.1016/j.powtec.2019.11.014
      [26]
      M. Cheng, Y. Liu, D.L. Huang, et al., Prussian blue analogue derived magnetic Cu–Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values, Chem. Eng. J., 362(2019), p. 865. doi: 10.1016/j.cej.2019.01.101
      [27]
      Q.M. Nie, M.Y. Wang, T.S. Qiu, and X.H. Qiu, Density functional theory and XPS studies of the adsorption of cyanide on chalcopyrite surfaces, ACS Omega, 5(2020), No. 36, p. 22778. doi: 10.1021/acsomega.0c01739
      [28]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite, Sep. Purif. Technol., 240(2020), art. No. 116650. doi: 10.1016/j.seppur.2020.116650
      [29]
      M. Ejtemaei and A.V. Nguyen, Characterisation of sphalerite and pyrite surfaces activated by copper sulphate, Miner. Eng., 100(2017), p. 223. doi: 10.1016/j.mineng.2016.11.005
      [30]
      Y.F. Cai, Y.G. Pan, J.Y. Xue, Q.F. Sun, G.Z. Su, and X. Li, Comparative XPS study between experimentally and naturally weathered pyrites, Appl. Surf. Sci., 255(2009), No. 21, p. 8750. doi: 10.1016/j.apsusc.2009.06.028
      [31]
      S. Qiu, Z.P. Guo, Q. Zheng, and B. Yan, Treatment of cyanide tailing slurry by Na2S2O5–air method, Nonferrous Met. Extr. Metal., 12(2015), p. 59.
      [32]
      Y.B. Tu, P.W. Han, L.Q. Wei, et al., Removal of cyanide adsorbed on pyrite by H2O2 oxidation under alkaline conditions, J. Environ. Sci., 78(2019), p. 287. doi: 10.1016/j.jes.2018.10.013

    Catalog


    • /

      返回文章
      返回