Cite this article as:

Wenwen Han, Hongying Yang, and Linlin Tong, Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.1996-2005. https://dx.doi.org/10.1007/s12613-023-2814-3
Wenwen Han, Hongying Yang, and Linlin Tong, Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.1996-2005. https://dx.doi.org/10.1007/s12613-023-2814-3
引用本文 PDF XML SpringerLink

黄铁矿和氰化物间的相互作用及黄铁矿氰化尾渣的化学氧化脱氰研究

摘要: 黄金生产过程中氰化提金工艺产生的大量氰化尾渣对环境有严重危害,氰化尾渣的脱氰处理具有重要意义。本文以氰化尾渣中存在的重要矿物黄铁矿为研究对象,对黄铁矿与氰化物间的相互作用及黄铁矿氰化尾渣的脱氰行为进行了分析。研究表明,氰化体系的高pH值、高氰化物浓度和高黄铁矿用量可以促进氰化物与黄铁矿间的相互作用。黄铁矿的氰化反应行为符合伪二级动力学模型。采用亚硫酸钠-空气氧化法对黄铁矿氰化尾渣进行脱氰处理。结果表明,在pH值为11.2、亚硫酸钠用量为22 mg⋅g−1黄铁矿、空气流量为1.46 L⋅min−1的条件下,脱氰反应1 h后总氰化物去除率为83.9%。对黄铁矿样品进行XPS检测分析,发现黄铁矿在氰化过程中生成了Fe(III)化合物和FeSO4。氰化后吸附在黄铁矿表面的氰化物主要以游离氰化物(CN)和亚铁氰化物( \mathrmF\mathrme\left(\mathrmC\mathrmN\right)_6^4- )的形式存在,通过亚硫酸钠-空气氧化法均能被有效脱除。在脱氰过程中,空气的通入促进了黄铁矿的氧化,减弱了黄铁矿表面对氰化物的吸附,强化了黄铁矿氰化尾渣中总氰化物的脱除。

 

Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation

Abstract: The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment. Pyrite is one of the main minerals existing in cyanide residues. In this work, the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed. Results revealed that high pH value, high cyanide concentration, and high pyrite dosage promoted the interaction of cyanide with pyrite. The cyanidation of pyrite was pseudo-second-order with respect to cyanide. The decyanation of pyrite cyanide residue by Na2SO3/air oxidation was performed. The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2, \mathrmS\mathrmO_3^2- dosage of 22 mg·g−1, and air flow rate of 1.46 L·min−1. X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(III) and FeSO4 during the cyanidation process. The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide (CN) and ferrocyanide ( \mathrmF\mathrme\left(\mathrmC\mathrmN\right)_6^4- ), which were effectively removed by Na2SO3/air oxidation. During the decyanation process, air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface. This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.

 

/

返回文章
返回