留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(12)

数据统计

分享

计量
  • 文章访问数:  331
  • HTML全文浏览量:  121
  • PDF下载量:  16
  • 被引次数: 0
Honghu Tang, Bingjian Liu, Mengshan Li, Qiancheng Zhang, Xiongxing Zhang, and Feng Jiang, Cooperative effect of sodium lauryl sulfate collector and sodium pyrophosphate depressant on the flotation separation of lead oxide minerals from hematite, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1975-1984. https://doi.org/10.1007/s12613-023-2815-2
Cite this article as:
Honghu Tang, Bingjian Liu, Mengshan Li, Qiancheng Zhang, Xiongxing Zhang, and Feng Jiang, Cooperative effect of sodium lauryl sulfate collector and sodium pyrophosphate depressant on the flotation separation of lead oxide minerals from hematite, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1975-1984. https://doi.org/10.1007/s12613-023-2815-2
引用本文 PDF XML SpringerLink
研究论文

捕收剂SLS和抑制剂SPP对铅氧化矿物与赤铁矿浮选分离的协同作用


  • 通讯作者:

    江锋    E-mail: feng_jiang@csu.edu.cn

文章亮点

  • (1) SLS和SPP的协同作用对铅氧化矿物和赤铁矿具有良好的浮选分离效果。
  • (2) SLS在PbOHCl和PbSO4表面表现出较强的选择性化学吸附行为。
  • (3) SPP选择性吸附于Fe2O3表面,有效抑制了赤铁矿的浮选。
  • 作为国民经济的支柱产业,钢铁行业同时也不可避免地产生了大量包含铅资源和有害元素的烧结粉尘。浮选被视为是一种从烧结粉尘中回收铅资源的有效技术,但浮选过程中如何实现铅氧化物与氧化铁的高效分离仍然具有挑战性。本论文系统研究了十二烷基硫酸钠(SLS,C12H25SO4Na)和焦磷酸钠(SPP,Na4P2O7)在选择性浮选分离铅氧化矿物(PbOHCl和PbSO4)与赤铁矿(Fe2O3)过程中的协同作用。首先通过单矿物浮选试验和人工混合矿浮选试验确定了最佳浮选条件,实现了铅氧化矿物的高效回收与赤铁矿的有效抑制。通过Zeta电位测量、傅里叶变换红外光谱(FT-IR)分析、吸附量测定和X射线光电子能谱(XPS)分析,揭示了药剂在矿物表面的吸附行为。研究结果表明,捕收剂SLS在PbOHCl和PbSO4表面上的吸附强度较大且不受抑制剂的影响,而抑制剂SPP可选择性吸附于Fe2O3表面,并抑制后续SLS的吸附。SLS和SPP在矿物表面的选择性吸附行为实现了铅氧化矿物和赤铁矿的高效浮选分离。
  • Research Article

    Cooperative effect of sodium lauryl sulfate collector and sodium pyrophosphate depressant on the flotation separation of lead oxide minerals from hematite

    + Author Affiliations
    • As a cornerstone of the national economy, the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements. Flotation is a promising technique for lead recovery from sintering dust, but efficient separation from Fe2O3 is still challenging. This study investigated the cooperative effect of sodium lauryl sulfate (SLS, C12H25SO4Na) and sodium pyrophosphate (SPP, Na4P2O7) on the selective flotation of lead oxide minerals (PbOHCl and PbSO4) from hematite (Fe2O3). Optimal flotation conditions were first identified, resulting in high recovery of lead oxide minerals while inhibiting Fe2O3 flotation. Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR) analysis, adsorption capacity analysis, and X-ray photoelectron spectroscopy (XPS) studies offer insights into the adsorption behaviors of the reagents on mineral surfaces, revealing strong adsorption of SLS on PbOHCl and PbSO4 surfaces and remarkable adsorption of SPP on Fe2O3. The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior, highlighting the pivotal role of reagent adsorption in the separation process. These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery, paving the way for sustainable resource management in the iron and steel industry.
    • loading
    • [1]
      Y.N. Xuan and Q. Yue, Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry, Resour. Conserv. Recycl., 120(2017), p. 186. doi: 10.1016/j.resconrec.2016.12.011
      [2]
      X.F. She, J.S. Wang, Q.G. Xue, et al., Basic properties of steel plant dust and technological properties of direct reduction, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 277. doi: 10.1007/s12613-011-0434-9
      [3]
      D.H. Liu, H. Liu, J.L. Zhang, et al., Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 991. doi: 10.1007/s12613-017-1487-1
      [4]
      N.A. El-Hussiny and M.E.H. Shalabi, Effect of recycling blast furnace flue dust as pellets on the sintering performance, Sci. Sintering, 42(2010), No. 3, p. 269. doi: 10.2298/SOS1003269E
      [5]
      B. Das, S. Prakash, P.S.R. Reddy, and V.N. Misra, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50(2007), No. 1, p. 40. doi: 10.1016/j.resconrec.2006.05.008
      [6]
      J.F. Li, Z.Q. Pan, Z.Y. Jiang, et al., Stack releases of radionuclides from an integrated steel plant in China, J. Environ. Radioact., 195(2018), p. 97. doi: 10.1016/j.jenvrad.2018.08.002
      [7]
      C. Lanzerstorfer, Q. Xu, and R. Neuhold, Leaching of the residue from the dry off-gas de-dusting and desulfurization process of an iron ore sinter plant, Int. J. Miner. Metall. Mater., 22(2015), No. 2, p. 116. doi: 10.1007/s12613-015-1051-9
      [8]
      C. Lanzerstorfer, Application of air classification for improved recycling of sinter plant dust, Resour. Conserv. Recycl., 94(2015), p. 66. doi: 10.1016/j.resconrec.2014.11.013
      [9]
      C. Peng, Z.C. Guo, and F.L. Zhang, Existing state of potassium chloride in agglomerated sintering dust and its water leaching kinetics, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1847. doi: 10.1016/S1003-6326(11)60940-0
      [10]
      G. Zhan and Z.C. Guo, Basic properties of sintering dust from iron and steel plant and potassium recovery, J. Environ. Sci., 25(2013), No. 6, p. 1226. doi: 10.1016/S1001-0742(12)60168-5
      [11]
      M. Sinha, R.V. Ramna, S. Sinha, and G. Bose, Characterisation of ESP dust sample from sinter plant, ISIJ Int., 50(2010), No. 11, p. 1719. doi: 10.2355/isijinternational.50.1719
      [12]
      H.H. Yi, T.T. Zhong, J. Liu, et al., Emissions of air pollutants from sintering flue gas in the Beijing–Tianjin–Hebei area and proposed reduction measures, J. Cleaner Prod., 304(2021), art. No. 126958. doi: 10.1016/j.jclepro.2021.126958
      [13]
      S.S. Rath, H. Sahoo, and B. Das, Optimization of flotation variables for the recovery of hematite particles from BHQ ore, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 605. doi: 10.1007/s12613-013-0773-9
      [14]
      Q.Y. Sun, W.Z. Yin, D. Li, Y.F. Fu, J.W. Xue, and J. Yao, Improving the sulfidation−flotation of fine cuprite by hydrophobic flocculation pretreatment, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1256. doi: 10.1007/s12613-018-1678-4
      [15]
      W. Lv, M. Gan, X.H. Fan, et al., Recycling utilization of zinc-bearing metallurgical dust by reductive sintering: Reaction behavior of zinc oxide, JOM, 71(2019), No. 9, p. 3173. doi: 10.1007/s11837-019-03645-y
      [16]
      G. Zhan and Z.C. Guo, Water leaching kinetics and recovery of potassium salt from sintering dust, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3770. doi: 10.1016/S1003-6326(13)62928-3
      [17]
      J.H. Tsai, K.H. Lin, C.Y. Chen, J.Y. Ding, C.G. Choa, and H.L. Chiang, Chemical constituents in particulate emissions from an integrated iron and steel facility, J. Hazard. Mater., 147(2007), No. 1-2, p. 111. doi: 10.1016/j.jhazmat.2006.12.054
      [18]
      M.L. Sammut, Y. Noack, J. Rose, et al., Speciation of Cd and Pb in dust emitted from sinter plant, Chemosphere, 78(2010), No. 4, p. 445. doi: 10.1016/j.chemosphere.2009.10.039
      [19]
      S. Wang, J. Liu, H.H. Yi, et al., Trends in air pollutant emissions from the sintering process of the iron and steel industry in the Fenwei Plain and surrounding regions in China, 2014–2017, Chemosphere, 291(2022), No. Pt 2, art. No. 132917.
      [20]
      G. Önal, G. Bulut, A. Gül, O. Kangal, K.T. Perek, and F. Arslan, Flotation of Aladagˇ oxide lead–zinc ores, Miner. Eng., 18(2005), No. 2, p. 279. doi: 10.1016/j.mineng.2004.10.018
      [21]
      Y.X. Zheng, J.L. Ning, W. Liu, P.J. Hu, J.F. Lü, and J. Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 358. doi: 10.1007/s12613-020-2029-9
      [22]
      H.B. Zuo, J.L. Zhang, Z.W. Hu, and T.J. Yang, Load reduction sintering for increasing productivity and decreasing fuel consumption, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 131. doi: 10.1007/s12613-013-0704-9
      [23]
      J.C. Leong, K.W. Jin, J.S. Shiau, T.M. Jeng, and C.H. Tai, Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 265. doi: 10.1016/S1674-4799(09)60048-0
      [24]
      C.E. Loo, N. Tame, and G.C. Penny, Effect of iron ores and sintering conditions on flame front properties, ISIJ Int., 52(2012), No. 6, p. 967. doi: 10.2355/isijinternational.52.967
      [25]
      Y.B. Zhang, B.B. Liu, L. Xiong, G.H. Li, and T. Jiang, Recycling of carbonaceous iron-bearing dusts from iron & steel plants by composite agglomeration process (CAP), Ironmaking Steelmaking, 44(2017), No. 7, p. 532. doi: 10.1080/03019233.2016.1219564
      [26]
      H.H. Tang, L.H. Zhao, W. Sun, Y.H. Hu, and H.S. Han, Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant, Colloids Surf. A, 509(2016), p. 323. doi: 10.1016/j.colsurfa.2016.09.041
      [27]
      F. Rashchi, A. Dashti, M. Arabpour-Yazdi, and H. Abdizadeh, Anglesite flotation: A study for lead recovery from zinc leach residue, Miner. Eng., 18(2005), No. 2, p. 205. doi: 10.1016/j.mineng.2004.10.014
      [28]
      D. Li, W.Z. Yin, J.W. Xue, J. Yao, Y.F. Fu, and Q. Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 736. doi: 10.1007/s12613-017-1457-7
      [29]
      B.W. Su, A. Heshmati, Y. Geng, and X.M. Yu, A review of the circular economy in China: Moving from rhetoric toimplementation, J. Cleaner Prod., 42(2013), p. 215. doi: 10.1016/j.jclepro.2012.11.020
      [30]
      Y.Z. Wang, J.L. Zhang, Z.J. Liu, et al., Co-utilization of converter sludge-containing dedust wastewater in iron ore sintering to save fresh water, enhance quality and reduce pollution, J. Cleaner Prod., 234(2019), p. 157. doi: 10.1016/j.jclepro.2019.06.186
      [31]
      R.Q. Liu, N.W. Jing, Y.F. Song, et al., Recovery of valuable elements from pyrite pyrolysis slag using magnetic separation-flotation technique, Sep. Purif. Technol., 299(2022), art. No. 121772. doi: 10.1016/j.seppur.2022.121772
      [32]
      H.H. Tang, W. Sun, and H.S. Han, A novel method for comprehensive utilization of sintering dust, Trans. Nonferrous Met. Soc. China, 25(2015), No. 12, p. 4192. doi: 10.1016/S1003-6326(15)64069-9
      [33]
      H.H. Tang, L.H. Zhao, W. Sun, et al., Extraction of rubidium from respirable sintering dust, Hydrometallurgy, 175(2018), p. 144. doi: 10.1016/j.hydromet.2017.11.003
      [34]
      H.H. Tang, F. Jiang, Y.H. Hu, H.S. Han, L. Wang, and W. Sun, Flotability of laurionite and its response to sulfidization flotation, Miner. Eng., 148(2020), art. No. 106183. doi: 10.1016/j.mineng.2020.106183
      [35]
      K. Jia, Y.X. Yi, W.J. Ma, et al., Ion flotation of heavy metal ions by using biodegradable biosurfactant as collector: Application and removal mechanism, Miner. Eng., 176(2022), art. No. 107338. doi: 10.1016/j.mineng.2021.107338
      [36]
      R.P. Liao, S.M. Wen, J. Liu, and Q.C. Feng, Flotation separation of fine smithsonite from calcite using sodium hexametaphosphate as the depressant in the Na2S–Pb (II)–KIAX system, Sep. Purif. Technol., 295(2022), art. No. 121245. doi: 10.1016/j.seppur.2022.121245
      [37]
      W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
      [38]
      H. Beygi, S.A. Sajjadi, A. Babakhani, J.F. Young, and F.C.J.M. van Veggel, Surface chemistry of as-synthesized and air-oxidized PbS quantum dots, Appl. Surf. Sci., 457(2018), p. 1. doi: 10.1016/j.apsusc.2018.06.152
      [39]
      C.X. Li, C. Wei, Z.G. Deng, X.B. Li, M.T. Li, and H.S. Xu, Hydrothermal sulfidation and flotation of oxidized zinc–lead ore, Metall. Mater. Trans. B, 45(2014), No. 3, p. 833. doi: 10.1007/s11663-013-9887-8
      [40]
      W. Sun, J.F. Su, G. Zhang, and Y.H. Hu, Separation of sulfide lead–zinc–silver ore under low alkalinity condition, J. Cent. South Univ., 19(2012), No. 8, p. 2307. doi: 10.1007/s11771-012-1276-y
      [41]
      Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113. doi: 10.1007/s12613-018-1662-z
      [42]
      M. Irannajad, M. Ejtemaei, and M. Gharabaghi, The effect of reagents on selective flotation of smithsonite–calcite–quartz, Miner. Eng., 22(2009), No. 9-10, p. 766. doi: 10.1016/j.mineng.2009.01.012
      [43]
      S.Y. Yang, X.Y. Qiu, T.F. Peng, Z.Y. Chang, Q.M. Feng, and C.G. Zhong, Beneficial effects and mechanism of lead ion on wolframite flotation, Physicochem. Probl. Miner. Process., 52(2016), No. 2, p. 855.
      [44]
      G.A. Bhaduri, R. Little, R.B. Khomane, et al., Green synthesis of silver nanoparticles using sunlight, J. Photochem. Photobiol. A, 258(2013), p. 1. doi: 10.1016/j.jphotochem.2013.02.015
      [45]
      K. Padalkar, V. Gaikar, and V. Aswal, Characterization of mixed micelles of sodium cumene sulfonate with sodium dodecyl sulfate and cetyl trimethylammonium bromide by SANS, FTIR spectroscopy and NMR spectroscopy, J. Mol. Liq., 144(2008), No. 1, p. 40.
      [46]
      Z. Wei, W. Sun, H.S. Han, G.R. Liu, J.H. Fu, and Y.W. Xing, Probing a colloidal lead-group multiple ligand collector and its adsorption on a mineral surface, Miner. Eng., 160(2021), art. No. 106696. doi: 10.1016/j.mineng.2020.106696
      [47]
      V.C. Ghantani, M.K. Dongare, and S.B. Umbarkar, Nonstoichiometric calcium pyrophosphate: A highly efficient and selective catalyst for dehydration of lactic acid to acrylic acid, RSC Adv., 4(2014), No. 63, p. 33319. doi: 10.1039/C4RA06429A
      [48]
      P.K. Jha, O.P. Pandey, and K. Singh, FTIR spectral analysis and mechanical properties of sodium phosphate glass–ceramics, J. Mol. Struct., 1083(2015), p. 278. doi: 10.1016/j.molstruc.2014.11.027
      [49]
      G. Cappelletti, C.L. Bianchi, and S. Ardizzone, XPS study of the surfactant film adsorbed onto growing titania nanoparticles, Appl. Surf. Sci., 253(2006), No. 2, p. 519. doi: 10.1016/j.apsusc.2005.12.098
      [50]
      X.T. He, J. Li, M. Chen, Y. Jin, Y.B. Wang, and J.D. Li, Resistance of deliquescence and caking to enhance the effective utilization of potassium nitrate: A novel surface modification method by SDS, Powder Technol., 356(2019), p. 500. doi: 10.1016/j.powtec.2019.08.035
      [51]
      G. Koyyada, B.S. Goud, K.C. Devarayapalli, J. Shim, S.P. Vattikuti, and J.H. Kim, BiFeO3/Fe2O3 electrode for photoelectrochemical water oxidation and photocatalytic dye degradation: A single step synthetic approach, Chemosphere, 303(2022), art. No. 135071. doi: 10.1016/j.chemosphere.2022.135071
      [52]
      J.Q. Li, J. Zhou, H.J. Hao, and W.J. Li, Controlled synthesis of Fe2O3 modified Ag–010BiVO4 heterostructures with enhanced photoelectrochemical activity toward the dye degradation, Appl. Surf. Sci., 399(2017), p. 1. doi: 10.1016/j.apsusc.2016.12.048
      [53]
      R.N.M. Abdul, T.N. Azrina, C.W. Siong, et al., Influence of different morphology of carbon nanostructures on the structural and optical properties of decorated single crystalline hematite nanocubes for photoelectrochemical applications, Appl. Surf. Sci., 498(2019), No., p. 143845.
      [54]
      P. Kumar, P. Sharma, R. Shrivastav, S. Dass, and V.R. Satsangi, Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting, Int. J. Hydrogen Energy, 36(2011), No. 4, p. 2777. doi: 10.1016/j.ijhydene.2010.11.107
      [55]
      V.D.B.C. Dasireddy, F.B. Khan, K. Bharuth-Ram, S. Singh, and H.B. Friedrich, Non oxidative and oxidative dehydrogenation of n-octane using FePO4: Effect of different FePO4 phases on the product selectivity, Catal. Sci. Technol., 10(2020), No. 22, p. 7591. doi: 10.1039/D0CY01585G
      [56]
      C.Y. Lu, K. Klementiev, T. Hassenkam, W. Qian, J. Ai, and H.C. Hansen, High affinity lanthanum doped iron oxide nanosheets for phosphate removal, Chem. Eng. J., 422(2021), art. No. 130009. doi: 10.1016/j.cej.2021.130009

    Catalog


    • /

      返回文章
      返回