留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(5)

数据统计

分享

计量
  • 文章访问数:  358
  • HTML全文浏览量:  154
  • PDF下载量:  36
  • 被引次数: 0
Fengbo Yan, Ziang Li, Hao Zhang, Yuchen Cui, Kaiqi Nie, Nuofu Chen,  and Jikun Chen, Temperature-sensing array using the metal-to-insulator transition of NdxSm1−xNiO3, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1694-1700. https://doi.org/10.1007/s12613-023-2816-1
Cite this article as:
Fengbo Yan, Ziang Li, Hao Zhang, Yuchen Cui, Kaiqi Nie, Nuofu Chen,  and Jikun Chen, Temperature-sensing array using the metal-to-insulator transition of NdxSm1−xNiO3, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1694-1700. https://doi.org/10.1007/s12613-023-2816-1
引用本文 PDF XML SpringerLink
研究论文

基于NdxSm1−xNiO3金属绝缘体相变特性的温度传感阵列



  • 通讯作者:

    陈吉堃    E-mail: jikunchen@ustb.edu.cn

文章亮点

  • (1) NdxSm1−xNiO3金属绝缘体相变特性无温度滞回且阻温系数远高于传统NTC热敏电阻
  • (2) NdxSm1−xNiO3金属绝缘体相变温度特性可通过稀土组分设计在200~400 K连续调节。
  • (3) 采用具有不同稀土组分的NdxSm1−xNiO3组成阵列可拓宽高阻温系数的温区,有望应用于精密温度测量。
  • 在诸多电子相变材料中,稀土镍基氧化物(RENiO3)具有宽温区可连续调控的金属绝缘体相变(MIT)特性,在强关联逻辑器件、突变式热敏电阻、红外伪装等方面具有潜在应用价值。本项工作利用碱金属卤化物助熔辅助下的高氧压固相反应制备了NdxSm1−xNiO3陶瓷材料,通过在x为0~1范围内调控Nd/Sm原子比例实现了其MIT特征触发温度(TMIT)在200~400 K温区的准连续调控。特别是对于x ≤ 0.8的NdxSm1−xNiO3其在跨越特征温度(TMIT)附近210~360 K温区范围内呈现出远高于传统负阻温系数(NTC)热敏电阻的阻温系数(例如,超过7%/K),且其升降温测量的电阻率温度关系无明显温度滞回。因此,通过引入优化的并联电阻可在10 K范围内实现NdxSm1−xNiO3电阻率与温度的线性变化,从而有望应用于精密温度传感;而进一步通过将具有不同稀土比例NdxSm1−xNiO3的组成阵列,可将上述精密温度传感的潜在温区拓宽至210~360 K。
  • Research Article

    Temperature-sensing array using the metal-to-insulator transition of NdxSm1−xNiO3

    + Author Affiliations
    • Rare-earth nickelates (RENiO3) show widely tunable metal-to-insulator transition (MIT) properties with ignorable variations in lattice constants and small latent heat across the critical temperature (TMIT). Particularly, it is worth noting that compared with the more commonly investigated vanadium oxides, the MIT of RENiO3 is less abrupt but usually across a wider range of temperatures. This sheds light on their alternative applications as negative temperature coefficient resistance (NTCR) thermistors with high sensitivity compared with the current NTCR thermistors, other than their expected use as critical temperature resistance thermistors. In this work, we demonstrate the NTCR thermistor functionality for using the adjustable MIT of NdxSm1−xNiO3 within 200–400 K, which displays larger magnitudes of NTCR (e.g., more than 7%/K) that is unattainable in traditional NTCR thermistor materials. The temperature dependence of resistance (RT) shows sharp variation during the MIT of NdxSm1−xNiO3 with no hysteresis via decreasing the Nd content (e.g., x ≤ 0.8), and such a RT tendency can be linearized by introducing an optimum parallel resistor. The sensitive range of temperature can be further extended to 210–360 K by combining a series of NdxSm1−xNiO3 with eight rare-earth co-occupation ratios as an array, with a high magnitude of NTCR (e.g., 7%–14%/K) covering the entire range of temperatures.
    • loading
    • Supplementary Information-s12613-023-2816-1.docx
    • [1]
      J.K. Chen, H.Y. Hu, J.O. Wang, et al., A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates, ACS Appl. Mater. Interfaces, 11(2019), No. 37, p. 34128. doi: 10.1021/acsami.9b12609
      [2]
      S.D. Ha, J. Shi, Y. Meroz, L. Mahadevan, and S. Ramanathan, Neuromimetic circuits with synaptic devices based on strongly correlated electron systems, Phys. Rev. Appl., 2(2014), No. 6, art. No. 064003. doi: 10.1103/PhysRevApplied.2.064003
      [3]
      H.T. Zhang, T.J. Park, I.A. Zaluzhnyy, et al., Perovskite neural trees, Nat. Commun., 11(2020), No. 1, art. No. 2245. doi: 10.1038/s41467-020-16105-y
      [4]
      F. Zuo, P. Panda, M. Kotiuga, et al., Habituation based synaptic plasticity and organismic learning in a quantum perovskite, Nat. Commun., 8(2017), No. 1, art. No. 240. doi: 10.1038/s41467-017-00248-6
      [5]
      F. Guo, S. Chen, Z. Chen, et al., Printed smart photovoltaic window integrated with an energy-saving thermochromic layer, Adv. Opt. Mater., 3(2015), No. 11, p. 1524. doi: 10.1002/adom.201500314
      [6]
      X. Deng, S.Q. Wang, Y.X. Liu, et al., A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing, Adv. Funct. Mater., 31(2021), No. 23, art. No. 2101099. doi: 10.1002/adfm.202101099
      [7]
      Z.A. Li, F.B. Yan, X.Y. Li, et al., Molten-salt synthesis of rare-earth nickelate electronic transition semiconductors at medium high metastability, Scripta Mater., 207(2022), art. No. 114271. doi: 10.1016/j.scriptamat.2021.114271
      [8]
      D. Li, K. Lee, B.Y. Wang, et al., Superconductivity in an infinite-layer nickelate, Nature, 572(2019), No. 7771, p. 624. doi: 10.1038/s41586-019-1496-5
      [9]
      S. Hyeon Lee, M. Kim, S.D. Ha, J.W. Lee, S. Ramanathan, and S. Tiwari, Space charge polarization induced memory in SmNiO3/Si transistors, Appl. Phys. Lett., 102(2013), No. 7, art. No. 072102. doi: 10.1063/1.4790394
      [10]
      S.H. Misha, N. Tamanna, A. Prakash, et al., Comprehensive analysis of electro thermally driven nanoscale insulator-metal transition SmNiO3-based selector for cross-point memory array, Jpn. J. Appl. Phys., 54(2015), No. 4S, art. No. 04DD09. doi: 10.7567/JJAP.54.04DD09
      [11]
      K. Ramadoss, F. Zuo, Y.F. Sun, et al., Proton-doped strongly correlated perovskite nickelate memory devices, IEEE Electron Device Lett., 39(2018), No. 10, p. 1500. doi: 10.1109/LED.2018.2865776
      [12]
      J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, A correlated nickelate synaptic transistor, Nat. Commun., 4(2013), art. No. 2676. doi: 10.1038/ncomms3676
      [13]
      C. Oh, M. Jo, and J. Son, All-solid-state synaptic transistors with high-temperature stability using proton pump gating of strongly correlated materials, ACS Appl. Mater. Interfaces, 11(2019), No. 17, p. 15733. doi: 10.1021/acsami.9b00392
      [14]
      Y.Y. Tian, S.H. Wang, G. Li, et al., Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers, Chin. Phys. B, 29(2020), No. 11, art. No. 117504. doi: 10.1088/1674-1056/abb666
      [15]
      H.T. Zhang, T.J. Park, A.N.M.N. Islam, et al., Reconfigurable perovskite nickelate electronics for artificial intelligence, Science, 375(2022), No. 6580, p. 533. doi: 10.1126/science.abj7943
      [16]
      J.K. Chen, Z.A. Li, H.L. Dong, et al., Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation, Adv. Funct. Mater., 30(2020), No. 23, art. No. 2000987. doi: 10.1002/adfm.202000987
      [17]
      X.Y. Li, Z.A. Li, F.B. Yan, et al., Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates, Rare Met., 41(2022), No. 10, p. 3495. doi: 10.1007/s12598-022-02033-x
      [18]
      H.Y. Li, Y.Z. Wang, F.Q. Meng, et al., Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2441. doi: 10.1007/s12613-023-2703-9
      [19]
      F.B. Yan, Z.S. Mi, J.H. Chen, et al., Revealing the role of interfacial heterogeneous nucleation in the metastable thin film growth of rare-earth nickelate electronic transition materials, Phys. Chem. Chem. Phys., 24(2022), No. 16, p. 9333. doi: 10.1039/D1CP05347G
      [20]
      Y.M. Klein, M. Kozłowski, A. Linden, P. Lacorre, M. Medarde, and D.J. Gawryluk, RENiO3 single crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) grown from molten salts under 2000 bar of oxygen gas pressure, Cryst. Growth Des., 21(2021), No. 7, p. 4230. doi: 10.1021/acs.cgd.1c00474
      [21]
      J.R. Li, R.J. Green, Z. Zhang, et al., Sudden collapse of magnetic order in oxygen-deficient nickelate films, Phys. Rev. Lett., 126(2021), No. 18, art. No. 187602. doi: 10.1103/PhysRevLett.126.187602
      [22]
      J.K. Chen, H.Y. Hu, J.O. Wang, et al., Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates, Mater. Horiz., 6(2019), No. 4, p. 788. doi: 10.1039/C9MH00008A
      [23]
      H. Zhang, Z. Li, T. Zhang, et al., Improvement of metal–insulator transition and mechanical strength of RENiO3 by co-sintering, J. Appl. Phys., 134(2023), No. 13, art. No. 135104. doi: 10.1063/5.0160814
      [24]
      W.J. Mao, Y.M. Jia, J. Wu, et al., Optical temperature sensing of piezoelectric Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ceramic, Funct. Mater. Lett., 9(2016), No. 5, art. No. 1650060. doi: 10.1142/S1793604716500600

    Catalog


    • /

      返回文章
      返回