留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  580
  • HTML全文浏览量:  200
  • PDF下载量:  70
  • 被引次数: 0
Zhiyin Deng, Xiaomeng Zhang, Guangyu Hao, Chunxin Wei, and Miaoyong Zhu, Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 977-987. https://doi.org/10.1007/s12613-023-2817-0
Cite this article as:
Zhiyin Deng, Xiaomeng Zhang, Guangyu Hao, Chunxin Wei, and Miaoyong Zhu, Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 977-987. https://doi.org/10.1007/s12613-023-2817-0
引用本文 PDF XML SpringerLink
研究论文

Al2O3夹杂物在CaO–MgO–SiO2–Al2O3–TiO2系精炼渣中的溶解行为


  • 通讯作者:

    邓志银    E-mail: dengzy@smm.neu.edu.cn

    朱苗勇    E-mail: myzhu@mail.neu.edu.cn

文章亮点

  • (1) 分析了Al2O3夹杂物在CaO–MgO–SiO2–Al2O3–TiO2系精炼渣中溶解的限制性环节。
  • (2) 计算了Al2O3在CaO–MgO–SiO2–Al2O3–TiO2系精炼渣中的扩散系数。
  • (3) 讨论了渣中TiO2含量对Al2O3夹杂物溶解速率的影响机制。
  • 在含钛铝镇静钢精炼过程中,钢液中的钛元素因钢–渣反应会向精炼渣中迁移,从而形成CaO–MgO–SiO2–Al2O3–TiO2系精炼渣,降低了钛的收得率。部分学者提出在精炼渣中添加少量TiO2来提高钛收得率。为了揭示精炼渣中的TiO2对夹杂物去除行为的影响规律,本文采用高温激光共聚焦显微镜观察了Al2O3夹杂物在含TiO2精炼渣(w(TiO2)= 0–10wt%)中的溶解行为,并利用扫描电子显微镜分析了Al2O3夹杂物与含TiO2精炼渣的界面反应行为。研究表明,Al2O3夹杂物在溶解过程中,并不会在夹杂物与实验精炼渣的边界生成新的物相,且实验精炼渣中的TiO2不会改变夹杂物的溶解机理,即边界层扩散是Al2O3夹杂物溶解的限制性环节。计算表明,在1450–1500°C时,边界层Al2O3的扩散系数在4.18 × 10−10和2.18 × 10−9 m2/s之间。当添加TiO2后,精炼渣中Al2O3的溶解度降低。尽管如此,相比Al2O3的溶解度,精炼渣的黏度和温度对Al2O3夹杂物溶解速率的影响更大,即低黏度和低熔点的精炼渣更有利于Al2O3夹杂物溶解。添加适当的TiO2(如5wt%)可以降低精炼渣的黏度和熔点,从而更有利于Al2O3夹杂物的溶解;而TiO2添加过量时(如10wt%)则作用相反。
  • Research Article

    Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags

    + Author Affiliations
    • To investigate the dissolution behaviors of Al2O3 inclusions in CaO–5wt%MgO–SiO2–30wt%Al2O3–TiO2 system ladle slags, confocal scanning laser microscopy was conducted on the slags with different TiO2 contents (0–10wt%), and scanning electron microscopy was performed to study the interfacial reaction between Al2O3 and this slag system. The results disclose that the dissolution of Al2O3 inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions. In TiO2-bearing and TiO2-free ladle slags, there is no difference in the dissolution mechanism of Al2O3 inclusions at steelmaking temperatures. Boundary layer diffusion is found as the controlling step of the dissolution of Al2O3, and the diffusion coefficient is in the range of 4.18 × 10−10 to 2.18 × 10−9 m2/s at 1450–1500°C. Compared with the solubility of Al2O3 in the slags, slag viscosity and temperature play a more profound role in the dissolution of Al2O3 inclusions. A lower viscosity and a lower melting point of the slags are beneficial for the dissolution. Suitable addition of TiO2 (e.g., 5wt%) in ladle slags can enhance the dissolution of Al2O3 inclusions because of the low viscosity and melting point of the slags, while excessive addition of TiO2 (e.g., 10wt%) shows the opposite trend.
    • loading
    • [1]
      L.X. Zhang, M. Chen, M.Y. Huang, N. Wang, and C. Wang, Dissolution kinetics of SiO2 in FeO–SiO2–V2O3–CaO–MnO–Cr2O3–TiO2 system with different FeO contents, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2703. doi: 10.1007/s11663-021-02214-6
      [2]
      G.J. Chen, S.P. He, and Q. Wang, Dissolution behavior of Al2O3 into tundish slag for high-Al steel, J. Mater. Res. Technol., 9(2020), No. 5, p. 11311. doi: 10.1016/j.jmrt.2020.07.107
      [3]
      Z.R. Li, B.R. Jia, Y.B. Zhang, S.P. He, Q.Q. Wang, and Q. Wang, Dissolution behaviour of Al2O3 in mould fluxes with low SiO2 content, Ceram. Int., 45(2019), No. 3, p. 4035. doi: 10.1016/j.ceramint.2018.11.082
      [4]
      B.N. Samaddar, W.D. Kingery, and A.R. Cooper JR, Dissolution in ceramic systems: 11, Dissolution of aluminu, mullite, anorthite, and silica in a calcium–aluminum–silicate slag, J. Am. Ceram. Soc., 47(1964), No. 5, p. 249. doi: 10.1111/j.1151-2916.1964.tb14405.x
      [5]
      K.H. Sandhage and G.J. Yurek, Indirect dissolution of sapphire into calcia–magnesia–alumina–silica melts: Electron microprobe analysis of the dissolution process, J. Am. Ceram. Soc., 73(1990), No. 12, p. 3643. doi: 10.1111/j.1151-2916.1990.tb04270.x
      [6]
      Y.J. Park, Y.M. Cho, W.Y. Cha, and Y.B. Kang, Dissolution kinetics of alumina in molten CaO–Al2O3–Fe tO–MgO–SiO2 oxide representing the RH slag in steelmaking process, J. Am. Ceram. Soc., 103(2020), No. 3, p. 2210. doi: 10.1111/jace.16879
      [7]
      S. Sridhar and A.W. Cramb, Kinetics of Al2O3 dissolution in CaO–MgO–SiO2–Al2O3 slags: In Situ observations and analysis, Metall. Mater. Trans. B, 31(2000), No. 2, p. 406. doi: 10.1007/s11663-000-0059-2
      [8]
      J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants, In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags, J. Eur. Ceram. Soc., 27(2007), No. 4, p. 1961. doi: 10.1016/j.jeurceramsoc.2006.05.107
      [9]
      J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang, In situ observation of the dissolution phenomena of SiC particle in CaO–SiO2–MnO slag, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3181. doi: 10.1016/j.jeurceramsoc.2010.07.020
      [10]
      Y.M. Lee, J.K. Yang, D.J. Min, and J.H. Park, Mechanism of MgO dissolution in MgF2–CaF2–MF (M = Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM), Ceram. Int., 45(2019), No. 16, p. 20251. doi: 10.1016/j.ceramint.2019.06.298
      [11]
      M. Sharma and N. Dogan, Dissolution behavior of aluminum titanate inclusions in steelmaking slags, Metall. Mater. Trans. B, 51(2020), No. 2, p. 570. doi: 10.1007/s11663-019-01762-2
      [12]
      K.Y. Miao, A. Haas, M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of calcium aluminate inclusions dissolution into steelmaking slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1612. doi: 10.1007/s11663-018-1303-y
      [13]
      T.L. Tian, Y.Z. Zhang, H.H. Zhang, K.X. Zhang, J. Li, and H. Wang, Dissolution behavior of SiO2 in the molten blast furnace slags, Int. J. Appl. Ceram. Technol., 16(2019), No. 3, p. 1078. doi: 10.1111/ijac.13120
      [14]
      L. Zhang, W.L. Wang, L. Zhang, J. Zeng, and X. Gao, A comparison study on the dissolution mechanism of Al2O3 inclusion on fluorine-bearing and fluorine-free molten mold fluxes, Ceram. Int., 49(2023), No. 16, p. 27176. doi: 10.1016/j.ceramint.2023.05.262
      [15]
      L. Gou, H. Liu, Y. Ren, and L.F. Zhang, Concept of inclusion capacity of slag and its application on the dissolution of Al2O3, ZrO2 and SiO2 inclusions in CaO–Al2O3–SiO2 slag, Metall. Mater. Trans. B, 54(2023), No. 3, p. 1314. doi: 10.1007/s11663-023-02763-y
      [16]
      C.Y. Ren, C.D. Huang, L.F. Zhang, and Y. Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 345. doi: 10.1007/s12613-021-2347-6
      [17]
      Y. Kim, Y. Kashiwaya, and Y. Chung, Effect of varying Al2O3 contents of CaO–Al2O3–SiO2 slags on lumped MgO dissolution, Ceram. Int., 46(2020), No. 5, p. 6205. doi: 10.1016/j.ceramint.2019.11.088
      [18]
      W.Z. Mu and C.J. Xuan, Phase-field study of dissolution behaviors of different oxide particles into oxide melts, Ceram. Int., 46(2020), No. 10, p. 14949. doi: 10.1016/j.ceramint.2020.03.023
      [19]
      C.J. Xuan and W.Z. Mu, A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates, J. Am. Ceram. Soc., 102(2019), No. 11, p. 6480. doi: 10.1111/jace.16509
      [20]
      J.J. Liu, J. Zou, M.X. Guo, and N. Moelans, Phase field simulation study of the dissolution behavior of Al2O3 into CaO–Al2O3–SiO2 slags, Comput. Mater. Sci., 119(2016), p. 9. doi: 10.1016/j.commatsci.2016.03.034
      [21]
      J. Heulens, B. Blanpain, and N. Moelans, A phase field model for isothermal crystallization of oxide melts, Acta Mater., 59(2011), No. 5, p. 2156. doi: 10.1016/j.actamat.2010.12.016
      [22]
      Z.J. Wang and I. Sohn, A review of in situ observations of crystallization and growth in high temperature oxide melts, JOM, 70(2018), No. 7, p. 1210. doi: 10.1007/s11837-018-2887-z
      [23]
      I. Sohn and R. Dippenaar, In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2083. doi: 10.1007/s11663-016-0675-0
      [24]
      D.C. Fu, G.H. Wen, X.Q. Zhu, J.L. Guo, and P. Tang, Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation, J. Iron Steel Res. Int., 28(2021), No. 9, p. 1133. doi: 10.1007/s42243-020-00513-x
      [25]
      Q.R. Tian, G.C. Wang, D.L. Shang, et al. , In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3137. doi: 10.1007/s11663-018-1411-8
      [26]
      Y.G. Wang and C.J. Liu, Agglomeration characteristics of various oxide inclusions in molten steel containing rare earth element under different deoxidation conditions, ISIJ Int., 61(2021), No. 5, p. 1396. doi: 10.2355/isijinternational.ISIJINT-2020-684
      [27]
      W.Z. Mu and C.J. Xuan, Agglomeration mechanism of complex Ti–Al oxides in liquid ferrous alloys considering high-temperature interfacial phenomenon, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2694. doi: 10.1007/s11663-019-01686-x
      [28]
      X.J. Zhao, Z.N. Yang, and F.C. Zhang, In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 620. doi: 10.1007/s12613-019-1911-9
      [29]
      J. Guo, X.R. Chen, S.W. Han, Y. Yan, and H.J. Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr–8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 328. doi: 10.1007/s12613-019-1945-z
      [30]
      M. Valdez, K. Prapakorn, A.W. Cramb, and S. Sridhar, Dissolution of alumina particles in CaO–Al2O3–SiO2–MgO slags, Ironmaking Steelmaking, 29(2002), No. 1, p. 47. doi: 10.1179/030192302225001965
      [31]
      M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of dissolution of oxide inclusions in steelmaking slags, JOM, 70(2018), No. 7, p. 1220. doi: 10.1007/s11837-018-2908-y
      [32]
      S. Taira, K. Nakashima, and K. Mori, Kinetic behavior of dissolution of sintered alumina into CaO–SiO2–Al2O3 slags, ISIJ Int., 33(1993), No. 1, p. 116. doi: 10.2355/isijinternational.33.116
      [33]
      W.D. Cho and P. Fan, Diffusional dissolution of alumina in various steelmaking slags, ISIJ Int., 44(2004), No. 2, p. 229. doi: 10.2355/isijinternational.44.229
      [34]
      F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain, and P. Wollants, Dissolution and diffusion behavior of Al2O3 in a CaO–Al2O3–SiO2 liquid: An experimental-numerical approach, Appl. Phys. Lett., 91(2007), No. 12, art. No. 124104.
      [35]
      C.Y. Ren, L.F. Zhang, J. Zhang, S.J. Wu, P. Zhu, and Y. Ren, In situ observation of the dissolution of Al2O3 particles in CaO–Al2O3–SiO2 slags, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3288. doi: 10.1007/s11663-021-02256-w
      [36]
      K.W. Yi, C. Tse, J.H. Park, M. Valdez, A.W. Cramb, and S. Sridhar, Determination of dissolution time of Al2O3 and MgO inclusions in synthetic Al2O3–CaO–MgO slags, Scand. J. Metall., 32(2003), No. 4, p. 177. doi: 10.1034/j.1600-0692.2003.20631.x
      [37]
      A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar, Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag, ISIJ Int., 44(2004), No. 5, p. 836. doi: 10.2355/isijinternational.44.836
      [38]
      B.J. Monaghan and L. Chen, Effect of changing slag composition on spinel inclusion dissolution, Ironmaking Steelmaking, 33(2006), No. 4, p. 323. doi: 10.1179/174328106X101547
      [39]
      Y. Ren, P. Zhu, C.Y. Ren, N. Liu, and L.F. Zhang, Dissolution of SiO2 inclusions in CaO–SiO2-based slags in situ observed using high-temperature confocal scanning laser microscopy, Metall. Mater. Trans. B, 53(2022), No. 2, p. 682. doi: 10.1007/s11663-021-02401-5
      [40]
      B.J. Monaghan and L. Chen, Dissolution behavior of alumina micro-particles in CaO–SiO2–Al2O3 liquid oxide, J. Non Cryst. Solids, 347(2004), No. 1-3, p. 254. doi: 10.1016/j.jnoncrysol.2004.09.011
      [41]
      G.Y. Hao, Z.Y. Deng, C.X. Wei, and M.Y. Zhu, Degradation behavior of MgO-based refractory by CaO–SiO2–Al2O3–MgO–TiO2 system ladle slags, Metall. Mater. Trans. B, 54(2023), No. 6, p. 3203. doi: 10.1007/s11663-023-02901-6
      [42]
      Y. Wang, J.H. Cho, T.S. Jeong, et al., Evolution of the non-metallic inclusions influenced by slag–metal reactions in Ti-containing ferritic stainless steel, Metall. Mater. Trans. B, 52(2021), No. 6, p. 3986. doi: 10.1007/s11663-021-02314-3
      [43]
      Z.D. Pang, X.W. Lü, Z.M. Yan, C.G. Bai, H.E. Xie, and C. Pan, Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag, Iron Steel, 55(2020), No. 8, p. 181.
      [44]
      X.M. Zhang, Z.W. Yan, Z.Y. Deng, and M.Y. Zhu, Effect of TiO2 addition on the melting behaviors of CaO-SiO2-30%Al2O3-5%MgO system refining slags, Metals, 13(2023), No. 2, art. No. 431. doi: 10.3390/met13020431
      [45]
      X.M. Zhang, Z.Y. Deng, Z.W. Yan, C.X. Wei and M.Y. Zhu; Effect of TiO2 addition on the viscosity of ladle refining slags, Metall. Mater. Trans. B, (2024). Doi: 10.1007/s11663-024-03055-9.
      [46]
      M.J. Whelan, On the kinetics of precipitate dissolution, Met. Sci. J., 3(1969), No. 1, p. 95. doi: 10.1179/msc.1969.3.1.95
      [47]
      K.C. Mills and B.J. Keene, Physical properties of BOS slags, Int. Mater. Rev., 32(1987), No. 1, p. 1. doi: 10.1179/095066087790150296
      [48]
      S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard, In situ observation of the dissolution of SiO2 particles in CaO–Al2O3–SiO2 slags and mathematical analysis of its dissolution pattern, J. Am. Ceram. Soc., 97(2014), No. 1, p. 316. doi: 10.1111/jace.12665

    Catalog


    • /

      返回文章
      返回