留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  371
  • HTML全文浏览量:  149
  • PDF下载量:  26
  • 被引次数: 0
Hui Xu, Lejun Zhou, Wanlin Wang,  and Yang Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2173-2181. https://doi.org/10.1007/s12613-023-2818-z
Cite this article as:
Hui Xu, Lejun Zhou, Wanlin Wang,  and Yang Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2173-2181. https://doi.org/10.1007/s12613-023-2818-z
引用本文 PDF XML SpringerLink
研究论文

通过薄带连铸制备性能优异的TRIP-assisted 硅锰钢的简单方法


  • 通讯作者:

    周乐君    E-mail: l.j.zhou@hotmail.com

文章亮点

  • (1) 探究了热处理前的初始凝固组织对最终组织和力学性能的影响。
  • (2) 通过薄带连铸结合淬火−配分工艺的简单流程,在低合金Si−Mn钢中获得了优异的综合力学性能。
  • (3) 分析了优异综合力学性能的来源,并总结了各相对力学性能的贡献。
  • 先进高强度钢(AHSSs)因其具有良好的综合力学性能,广泛应用于汽车工业。但复杂的轧制、热处理工艺以及高昂的生产成本,限制了AHSSs的大规模生产和应用。针对现存AHSSs工艺复杂、合金添加量高、生产成本高等问题,本研究旨在开发出一条简单、低成本的AHSSs生产工艺。为了满足对最终产品力学性能和成本的期望,本研究将具有独特亚快速凝固特性和成本优势的薄带连铸(DSC)技术与淬火−配分(Q&P)工艺结合应用于低合金Si−Mn钢的生产。并将该方法与传统CSP工艺进行比较,研究了不同凝固条件下形成的初始微观结构以及热处理工艺对最终力学性能的影响。研究结果表明,具有亚快速凝固特性的DSC样品的初始结构是显著细化的板条马氏体和贝氏体的双相结构。与CSP样品中珠光体和铁素体的初始结构相比,DSC样品表现出显著更优的综合力学性能(屈服强度为874 MPa,抗拉强度为1268 MPa,延伸率为13.1%)。经过相同的Q&P处理后,DSC样品中残余奥氏体的体积分数及其碳含量普遍高于CSP样品。其中,DSC-Pt300样品的综合力学性能最佳,屈服强度为1282 MPa,抗拉强度为1501 MPa,延伸率为21.5%,强塑积高达32.3 GPa⋅%。这些结果表明,通过简单的工艺(DSC−Q&P)可以在低合金Si−Mn钢中获得优异的力学性能,证明了DSC技术在制造AHSSs方面的优越性。
  • Research Article

    A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting

    + Author Affiliations
    • The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels (AHSSs). In this study, the direct strip casting (DSC) technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si–Mn steel with the help of quenching & partitioning (Q&P) concept to address these issues. Compared this method with the conventional compact strip production (CSP) process, the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were investigated. The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite, while the initial structure of the CSP sample consists of pearlite and ferrite. The volume fraction and carbon content of retained austenite (RA) in DSC samples are usually higher than those in CSP samples after the same Q&P treatment. DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample. The DSC sample partitioned at 300°C for 300 s (DSC-Pt300) achieves the best comprehensive mechanical properties, with yield strength (YS) of 1282 MPa, ultimate tensile strength (UTS) of 1501 MPa, total elongation (TE) of 21.5%, and product of strength and elongation (PSE) as high as 32.3 GPa·%. These results indicate that the excellent mechanical properties in low-alloy Si–Mn steel can be obtained through a simple process (DSC−Q&P), which also demonstrates the superiority of DSC technology in manufacturing AHSSs.
    • loading
    • [1]
      X.L. Gui, G.H. Gao, H.R. Guo, F.F. Zhao, Z.L. Tan, and B.Z. Bai, Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn–Si–Cr–C steel, Mater. Sci. Eng. A, 684(2017), p. 598. doi: 10.1016/j.msea.2016.12.097
      [2]
      F. Peng, X.L. Gu, and Y.B. Xu, Tailoring austenite stability and mechanical behaviors of IQ&P steel via prior bainite formation, Mater. Sci. Eng. A, 822(2021), art. No. 141663. doi: 10.1016/j.msea.2021.141663
      [3]
      R. Ding, Z.B. Dai, M.X. Huang, Z.G. Yang, C. Zhang, and H. Chen, Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe–0.2C–8Mn–2Al medium Mn steel, Acta Mater., 147(2018), p. 59. doi: 10.1016/j.actamat.2018.01.009
      [4]
      Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
      [5]
      Y. Ma, R. Zheng, Z.Y. Gao, et al., Multiphase-field simulation of austenite reversion in medium-Mn steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 847. doi: 10.1007/s12613-021-2282-6
      [6]
      S. Yan, X.H. Liu, W.J. Liu, H.F. Lan, and H.Y. Wu, Comparison on mechanical properties and microstructure of a C–Mn–Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes, Mater. Sci. Eng. A, 620(2015), p. 58. doi: 10.1016/j.msea.2014.09.047
      [7]
      J.P. Lai, J.X. Yu, and J. Wang, Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 676. doi: 10.1007/s12613-020-2164-3
      [8]
      J. Zhou, Y.L. Kang, and X.P. Mao, Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, p. 389. doi: 10.1016/S1005-8850(08)60074-2
      [9]
      S.K. Giri, T. Chanda, S. Chatterjee, and A. Kumar, Hot ductility of C–Mn and microalloyed steels evaluated for thin slab continuous casting process, Mater. Sci. Technol., 30(2014), No. 3, p. 268. doi: 10.1179/1743284713Y.0000000348
      [10]
      L. Yang, Y. Li, Z.L. Xue, and C.G. Cheng, Effect of different thermal schedules on ductility of microalloyed steel slabs during continuous casting, Metals, 9(2019), No. 1, art. No. 37. doi: 10.3390/met9010037
      [11]
      S. Ge, M. Isac, and R.I.L. Guthrie, Progress in strip casting technologies for steel; technical developments, ISIJ Int., 53(2013), No. 5, p. 729. doi: 10.2355/isijinternational.53.729
      [12]
      N. Zapuskalov, Comparison of continuous strip casting with conventional technology, ISIJ Int., 43(2003), No. 8, p. 1115.
      [13]
      Y. Kwon, J.H. Hwang, H.C. Choi, et al., Microstructure and tensile properties of ferritic lightweight steel produced by twin-roll casting, Met. Mater. Int., 26(2020), No. 1, p. 75. doi: 10.1007/s12540-019-00314-2
      [14]
      M. Ferry, Direct Strip Casting Of Metals And Alloys, Woodhead Publishing Limited, Cambridge, 2006.
      [15]
      S. Ge, M. Isac, and R.I.L. Guthrie, Progress of strip casting technology for steel; Historical developments, ISIJ Int., 52(2012), No. 12, p. 2109. doi: 10.2355/isijinternational.52.2109
      [16]
      Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Mater. Des., 88(2015), p. 537. doi: 10.1016/j.matdes.2015.09.031
      [17]
      Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation, Mater. Sci. Eng. A, 651(2016), p. 291. doi: 10.1016/j.msea.2015.10.120
      [18]
      J.Y. Park, K.H. Oh, and H.Y. Ra, The effects of superheating on texture and microstructure of Fe–4.5wt%Si steel strip by twin-roll strip casting, ISIJ Int., 41(2001), No. 1, p. 70. doi: 10.2355/isijinternational.41.70
      [19]
      M.F. Lan, Y.X. Zhang, F. Fang, et al., Effect of annealing after strip casting on microstructure, precipitates and texture in non-oriented silicon steel produced by twin-roll strip casting, Mater. Charact., 142(2018), p. 531. doi: 10.1016/j.matchar.2018.06.016
      [20]
      Z.Y. Liu, Z.S. Lin, S.H. Wang, Y.Q. Qiu, X.H. Liu, and G.D. Wang, Microstructure characterization of austenitic Fe–25Mn–22Cr–2Si–0.7N alloy processed by twin roll strip casting, Mater. Charact., 58(2007), No. 10, p. 974. doi: 10.1016/j.matchar.2006.10.005
      [21]
      M. Daamen, C. Haase, J. Dierdorf, D.A. Molodov, and G. Hirt, Twin-roll strip casting: A competitive alternative for the production of high-manganese steels with advanced mechanical properties, Mater. Sci. Eng. A, 627(2015), p. 72. doi: 10.1016/j.msea.2014.12.069
      [22]
      C.J. Song, W. Lu, K. Xie, et al., Microstructure and mechanical properties of sub-rapidly solidified Fe–18 wt%Mn–C alloy strip, Mater. Sci. Eng. A, 610(2014), p. 145. doi: 10.1016/j.msea.2014.05.033
      [23]
      N. Yamauchi, A. Okamoto, H. Tukahara, et al., Friction and wear of DLC films on 304 austenitic stainless steel in corrosive solutions, Surf. Coat. Technol., 174-175(2003), p. 465. doi: 10.1016/S0257-8972(03)00406-7
      [24]
      K. Mukunthan, P.D. Hodgson, P. Sellamuthu, L. Strezov, Y. Durandet, and N. Stanford, Castability and microstructural development of iron-based alloys under conditions pertinent to strip casting–specialty Fe–Cr–Al alloys, ISIJ Int., 53(2013), No. 10, p. 1803. doi: 10.2355/isijinternational.53.1803
      [25]
      L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang, Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite, Scripta Mater., 150(2018), p. 1. doi: 10.1016/j.scriptamat.2018.02.035
      [26]
      P.S. Lyu, W.L. Wang, C.H. Wang, L.J. Zhou, Y. Fang, and J.C. Wu, Effect of sub-rapid solidification and secondary cooling on microstructure and properties of strip cast low-carbon bainitic–martensitic steel, Metall. Mater. Trans. A, 52(2021), No. 9, p. 3945. doi: 10.1007/s11661-021-06356-9
      [27]
      H. Xu, W.L. Wang, C. Lu, P.S. Lv, and C.Y. Zhu, Evolution of solidification structure for Si–Mn bearing AHSS under typical cooling rates, J. Mater. Res. Technol., 15(2021), p. 524. doi: 10.1016/j.jmrt.2021.08.057
      [28]
      R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson, Thermo-mechanical processing of TRIP-aided steels, Metall. Mater. Trans. A, 46(2015), No. 7, p. 3232. doi: 10.1007/s11661-015-2885-5
      [29]
      J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611. doi: 10.1016/S1359-6454(03)00059-4
      [30]
      S.Z. Yin, A. Howells, D.J. Lloyd, M. Gallerneault, and V. Fallah, Thin strip vs direct chill casting: The effects of casting cooling rate on the As-cast microstructure of AA6005 Al–Si–Mg alloy, Metall. Mater. Trans. A, 53(2022), No. 6, p. 1928. doi: 10.1007/s11661-022-06675-5

    Catalog


    • /

      返回文章
      返回