Cite this article as: |
Leyi Zhang, Hongyu Jin, Hanxin Liao, Rao Zhang, Bochong Wang, Jianyong Xiang, Congpu Mu, Kun Zhai, Tianyu Xue, and Fusheng Wen, Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1912-1921. https://doi.org/10.1007/s12613-023-2820-5 |
王博翀 E-mail: wangbch2008@hotmail.com
牟从普 E-mail: congpumu@ysu.edu.cn
温福昇 E-mail: wenfsh03@126.com
Supplementary Information-s12613-023-2820-5.docx |
[1] |
C.L. Russell, 5G wireless telecommunications expansion: public health and environmental implications, Environ. Res., 165(2018), p. 484. doi: 10.1016/j.envres.2018.01.016
|
[2] |
S.M.S. Reyhani, and S.A. Ludwing, An implanted spherical head model exposed to electromagnetic fields at a mobile communication frequency, IEEE Trans. Biomed. Eng., 53(2006), No. 10, p. 2092. doi: 10.1109/TBME.2006.881770
|
[3] |
Z.X. Cai, L. Su, H.J. Wang, et al., Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction, Carbon, 191(2022), p. 227. doi: 10.1016/j.carbon.2022.01.036
|
[4] |
R. Zhang, C.P. Mu, B.C. Wang, et al., Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 485. doi: 10.1007/s12613-022-2520-6
|
[5] |
J.J. Zhou, X.Y. Wang, K.Y. Ge, et al., Core–shell structured nanocomposites formed by silicon coated carbon nanotubes with anti-oxidation and electromagnetic wave absorption, J. Colloid Interface Sci., 607(2022), p. 881. doi: 10.1016/j.jcis.2021.09.022
|
[6] |
X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, and W.L. Yin, Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials, Adv. Funct. Mater., 32(2022), No. 5, art. No. 2107508. doi: 10.1002/adfm.202107508
|
[7] |
D.D. Min, W.C. Zhou, Y.C. Qing, F. Luo, and D.M. Zhu, Single-layer and double-layer microwave absorbers based on graphene nanosheets/epoxy resin composite, Nano, 12(2017), No. 7, art. No. 1750089. doi: 10.1142/S1793292017500898
|
[8] |
G.J.H. Melvin, Q.Q. Ni, and Z.P. Wang, Performance of barium titanate@carbon nanotube nanocomposite as an electromagnetic wave absorber, Phys. Status Solidi A, 214(2017), No. 2, art. No. 1600541. doi: 10.1002/pssa.201600541
|
[9] |
H.Y. Wang and H.B. Ma, The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2T x nanocomposites, J. Mater. Sci. Mater. Electron., 30(2019), No. 16, p. 15250. doi: 10.1007/s10854-019-01897-7
|
[10] |
Z. Zhang, G.H. Wang, W.H. Gu, Y. Zhao, S.L. Tang, and G.B. Ji, A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications, J. Colloid Interface Sci., 605(2022), p. 193. doi: 10.1016/j.jcis.2021.07.085
|
[11] |
B.L. Wang, Y.G. Fu, J. Li, and T. Liu, Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption, J. Colloid Interface Sci., 607(2022), p. 1540. doi: 10.1016/j.jcis.2021.09.028
|
[12] |
X.J. Cui, Q.R. Jiang, C.S. Wang, et al., Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance, Mater. Today Nano, 16(2021), art. No. 100138. doi: 10.1016/j.mtnano.2021.100138
|
[13] |
X.B. Xie, C. Ni, Z.H. Lin, et al., Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application, Chem. Eng. J., 396(2020), art. No. 125205. doi: 10.1016/j.cej.2020.125205
|
[14] |
J.N. Hu, C.Y. Liang, J.D. Li, et al., Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave absorption, Appl. Surf. Sci., 570(2021), art. No. 151270. doi: 10.1016/j.apsusc.2021.151270
|
[15] |
H.Y. Wang, X.B. Sun, S.H. Yang, et al., 3D ultralight hollow NiCo Compound@MXene composites for tunable and high-efficient microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 206. doi: 10.1007/s40820-021-00727-y
|
[16] |
Y.S. Cao, Z. Cheng, R.F. Wang, et al., Multifunctional graphene/carbon fiber aerogels toward compatible electromagnetic wave absorption and shielding in gigahertz and terahertz bands with optimized radar cross section, Carbon, 199(2022), p. 333. doi: 10.1016/j.carbon.2022.07.077
|
[17] |
Q.C. Zhang, Z.J. Du, M.M. Hou, et al., Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption, Carbon, 188(2022), p. 442. doi: 10.1016/j.carbon.2021.11.047
|
[18] |
L.Y. Liang, Q.M. Li, X. Yan, et al., Multifunctional magnetic Ti3C2T x MXene/graphene aerogel with superior electromagnetic wave absorption performance, ACS Nano, 15(2021), No. 4, p. 6622. doi: 10.1021/acsnano.0c09982
|
[19] |
J. Liu, H.B. Zhang, X. Xie, et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14(2018), No. 45, art. No. 1802479. doi: 10.1002/smll.201802479
|
[20] |
L. Song, F. Zhang, Y. Chen, et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption, Nanomicro Lett., 14(2022), No. 1, art. No. 152. doi: 10.1007/s40820-022-00905-6
|
[21] |
L.L. Bi, Z.L. Yang, L.J. Chen, Z. Wu, and C. Ye, Compressible AgNWs/Ti3C2T x MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins, J. Mater. Chem. A, 8(2020), No. 38, p. 20030. doi: 10.1039/D0TA07044K
|
[22] |
Y.N. Ma, Y. Yue, H. Zhang, et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor, ACS Nano, 12(2018), No. 4, p. 3209. doi: 10.1021/acsnano.7b06909
|
[23] |
C.X. Yang, W.J. Liu, N.S. Liu, et al., Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 33165. doi: 10.1021/acsami.9b12055
|
[24] |
S. Wei, X.Y. Qiu, J.Q. An, Z.M. Chen, and X.X. Zhang, Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application, Compos. Sci. Technol., 207(2021), art. No. 108730. doi: 10.1016/j.compscitech.2021.108730
|
[25] |
M.Q. Jian, K.L. Xia, Q. Wang, et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures, Adv. Funct. Mater., 27(2017), No. 9, art. No. 1606066. doi: 10.1002/adfm.201606066
|
[26] |
X.J. Xu, R.R. Wang, P. Nie, et al., Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor, ACS Appl. Mater. Interfaces, 9(2017), No. 16, p. 14273. doi: 10.1021/acsami.7b02087
|
[27] |
J. Xue, J.W. Chen, J.Z. Song, L.M. Xu, and H.B. Zeng, Wearable and visual pressure sensors based on Zn2GeO4@polypyrrole nanowire aerogels, J. Mater. Chem. C, 5(2017), No. 42, p. 11018. doi: 10.1039/C7TC04147K
|
[28] |
Y. Tian, J.K. Han, J.K. Yang, H.P. Wu, and H. Bai, A highly sensitive graphene aerogel pressure sensor inspired by fluffy spider leg, Adv. Mater. Interfaces, 8(2021), No. 15, art. No. 2100511. doi: 10.1002/admi.202100511
|
[29] |
L. Pu, Y.P. Liu, L. Li, et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47134. doi: 10.1021/acsami.1c13863
|
[30] |
B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, and X.Y. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers, ACS Nano, 13(2019), No. 7, p. 7886. doi: 10.1021/acsnano.9b02258
|
[31] |
F.F. Jia, F. Xie, S.S. Chen, et al., Magnetic Ti3C2T x/Fe3O4/Aramid nanofibers composite paper with tunable electromagnetic interference shielding performance, Appl. Phys. A, 127(2021), No. 3, art. No. 175. doi: 10.1007/s00339-021-04295-1
|
[32] |
L. Wang, M.Y. Zhang, B. Yang, J.J. Tan, and X.Y. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor, ACS Nano, 14(2020), No. 8, p. 10633. doi: 10.1021/acsnano.0c04888
|
[33] |
S.J. Wang, W.Y. Meng, H.F. Lv, Z.X. Wang, and J.W. Pu, Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing, Carbohydr. Polym., 270(2021), art. No. 118414. doi: 10.1016/j.carbpol.2021.118414
|
[34] |
H. Liu, G.Z. Cui, L. Li, Z. Zhang, X.L. Lv, and X.X. Wang, Polypyrrole chains decorated on CoS spheres: A core–shell like heterostructure for high-performance microwave absorption, Nanomaterials, 10(2020), No. 1, art. No. 166. doi: 10.3390/nano10010166
|
[35] |
L.J. Yu, L.M. Yu, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, and Q.Q. Ni, Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber, J. Mater. Sci. Mater. Electron., 30(2019), No. 6, p. 5598. doi: 10.1007/s10854-019-00853-9
|
[36] |
X.X. Wang, M.X. Yu, W. Zhang, B.Q. Zhang, and L.F. Dong, Synthesis and microwave absorption properties of graphene/nickel composite materials, Appl. Phys. A, 118(2015), No. 3, p. 1053. doi: 10.1007/s00339-014-8873-6
|
[37] |
H.J. Wu, J.L. Liu, H.S. Liang, and D.Y. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption, Chem. Eng. J., 393(2020), art. No. 124743. doi: 10.1016/j.cej.2020.124743
|
[38] |
C. Cui, R.H. Guo, E.H. Ren, et al., MXene-based rGO/Nb2CT x/Fe3O4 composite for high absorption of electromagnetic wave, Chem. Eng. J., 405(2021), art. No. 126626. doi: 10.1016/j.cej.2020.126626
|
[39] |
X. Li, Z.L. Wang, Z. Xiang, et al., Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption, Carbon, 184(2021), p. 115. doi: 10.1016/j.carbon.2021.08.025
|
[40] |
Y. Shu, T.K. Zhao, X.H. Li, et al., Surface plasmon resonance-enhanced dielectric polarization endows coral-like Co@CoO nanostructures with good electromagnetic wave absorption performance, Appl. Surf. Sci., 585(2022), art. No. 152704. doi: 10.1016/j.apsusc.2022.152704
|
[41] |
X.C. Liang, C.G. Wang, M.J. Yu, Z.Q. Yao, and Y. Zhang, Fe-MOFs derived porous Fe4N@carbon composites with excellent broadband electromagnetic wave absorption properties, J. Alloys Compd., 910(2022), art. No. 164844. doi: 10.1016/j.jallcom.2022.164844
|
[42] |
Q.L. Chang, C.P. Li, J. Sui, G.I.N. Waterhouse, Z.M. Zhang, and L.M. Yu, Ni/Ni3ZnC0.7 modified alginate-derived carbon composites with porous structures for electromagnetic wave absorption, Carbon, 200(2022), p. 166. doi: 10.1016/j.carbon.2022.07.075
|
[43] |
H.Y. Tian, J. Qiao, Y.F. Yang, et al., ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption, Chem. Eng. J., 450(2022), art. No. 138011. doi: 10.1016/j.cej.2022.138011
|
[44] |
X.C. Zhang, X. Zhang, H.R. Yuan, et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123208. doi: 10.1016/j.cej.2019.123208
|
[45] |
Y.H. Zhang, H.X. Si, S.C. Liu, Z.Y. Jiang, J.W. Zhang, and C.H. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance, J. Alloys Compd., 850(2021), art. No. 156680. doi: 10.1016/j.jallcom.2020.156680
|
[46] |
Y.H. Cui, K. Yang, J.Q. Wang, T. Shah, Q.Y. Zhang, and B.L. Zhang, Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave, Carbon, 172(2021), p. 1. doi: 10.1016/j.carbon.2020.09.093
|
[47] |
Z. Shan, S.Y. Cheng, F. Wu, et al., Electrically conductive two-dimensional metal-organic frameworks for superior electromagnetic wave absorption, Chem. Eng. J., 446(2022), art. No. 137409. doi: 10.1016/j.cej.2022.137409
|
[48] |
B.X. Zhang, T. Prikhna, C.P. Hu, and Z.J. Wang, Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption, Appl. Surf. Sci., 560(2021), art. No. 150027. doi: 10.1016/j.apsusc.2021.150027
|
[49] |
H.P. Lv, C. Wu, J. Tang, et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption, Chem. Eng. J., 411(2021), art. No. 128445. doi: 10.1016/j.cej.2021.128445
|
[50] |
J. Xu, X. Zhang, Z.B. Zhao, et al., Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties, Small, 17(2021), No. 33, art. No. 2102032. doi: 10.1002/smll.202102032
|
[51] |
X.K. Lu, D.M. Zhu, X. Li, and Y.J. Wang, Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption, Carbon, 197(2022), p. 209. doi: 10.1016/j.carbon.2022.06.019
|
[52] |
Y.Y. Dong, X.J. Zhu, F. Pan, et al., Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption, Carbon, 190(2022), p. 68. doi: 10.1016/j.carbon.2022.01.008
|
[53] |
Y. Tong, M. He, Y.M. Zhou, et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2T x/RGO ternary composite aerogel for enhanced electromagnetic wave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8212. doi: 10.1021/acssuschemeng.7b04883
|
[54] |
Y.L. Ma, Y.B. Li, X. Zhao, et al., Lightweight and multifunctional super-hydrophobic aramid nanofiber/multiwalled carbon nanotubes/Fe3O4 aerogel for microwave absorption, thermal insulation and pollutants adsorption, J. Alloys Compd., 919(2022), art. No. 165792. doi: 10.1016/j.jallcom.2022.165792
|
[55] |
X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
|
[56] |
W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, and G.B. Ji, Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 102. doi: 10.1007/s40820-021-00635-1
|
[57] |
Z.W. Ye, K.J. Wang, X.Q. Li, and J.J. Yang, Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials, J. Alloys Compd., 893(2022), art. No. 162396. doi: 10.1016/j.jallcom.2021.162396
|
[58] |
Y.H. Cui, K. Yang, F.R. Zhang, Y.T. Lyu, Q.Y. Zhang, and B.L. Zhang, Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion, Composites Part A, 158(2022), art. No. 106986. doi: 10.1016/j.compositesa.2022.106986
|
[59] |
L. Li, H.T. Zhao, P.B. Li, et al., Rough porous N-doped graphene fibers modified with Fe-based Prussian blue analog derivative for wide-band electromagnetic wave absorption, Composites Part B, 243(2022), art. No. 110121. doi: 10.1016/j.compositesb.2022.110121
|
[60] |
Q.F. Li, X.Y. Wang, Z.L. Zhang, et al. , In situ synthesis of core–shell nanocomposites based on polyaniline/Ni–Zn ferrite and enhanced microwave absorbing properties, J. Mater. Sci. Mater. Electron., 30(2019), No. 23, p. 20515. doi: 10.1007/s10854-019-02410-w
|
[61] |
B. Du, M. Cai, X. Wang, J.J. Qian, C. He, and A.Z. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites, J. Adv. Ceram., 10(2021), No. 4, p. 832. doi: 10.1007/s40145-021-0476-z
|
[62] |
S. Chen, Y.L. Chen, D.Q. Li, Y.L. Xu, and F. Xu, Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels, ACS Appl. Mater. Interfaces, 13(2021), No. 7, p. 8754. doi: 10.1021/acsami.0c21392
|
[63] |
Q. Xu, X.H. Chang, Z.D. Zhu, et al., Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel, RSC Adv., 11(2021), No. 19, p. 11760. doi: 10.1039/D0RA10929K
|
[64] |
Y.S. Yuan and N. Solin, Protein-based flexible conductive aerogels for piezoresistive pressure sensors, ACS Appl. Bio Mater., 5(2022), No. 7, p. 3360. doi: 10.1021/acsabm.2c00348
|
[65] |
T.D. Chen, J.Q. Wang, X.Z. Wu, Z.P. Li, and S.R. Yang, Ethanediamine induced self-assembly of long-range ordered GO/MXene composite aerogel and its piezoresistive sensing performances, Appl. Surf. Sci., 566(2021), art. No. 150719. doi: 10.1016/j.apsusc.2021.150719
|