留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(16)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  143
  • HTML全文浏览量:  59
  • PDF下载量:  18
  • 被引次数: 0
Xiaoli Su, Diyuan Li, Junjie Zhao, Mimi Wang, Xing Su, and Aohui Zhou, Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2821-4
Cite this article as:
Xiaoli Su, Diyuan Li, Junjie Zhao, Mimi Wang, Xing Su, and Aohui Zhou, Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2821-4
引用本文 PDF XML SpringerLink
研究论文

基于矿物微观模型的微波诱导花岗岩开裂及熔化数值模拟研究


  • 通讯作者:

    李地元    E-mail: diyuan.li@csu.edu.cn

  • 本研究提出了一种基于花岗岩矿物微观结构的电磁-热-力耦合模型,揭示了微波辐射下多矿物花岗岩的微观开裂机制及矿物熔化规律。室内微波加热实验验证了该模型的合理性。基于微波加热的多场耦合数值模拟显示:不均匀的温度梯度导致花岗岩断裂表面形成了熔化、多孔和非熔化区。矿物间的热膨胀系数和杨氏模量差异导致了矿物边界处产生了显著的热应力。由于较高的热膨胀系数,石英和黑云母受到了压缩作用,而具有较小的热膨胀系数的斜长石则受到拉伸应力。在熔化区域,石英经历α–β相变而产生了穿晶裂纹。花岗岩内部的局部高温还引发了黑云母和长石的熔化相变。这一数值模拟研究为微波照射下岩石内部热应力分布和矿物相变提供了新的认识。
  • Research Article

    Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models

    + Author Affiliations
    • This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation. Experimental tests validate the rationality of the proposed model. Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten, porous, and nonmolten zones on the fracture surface. Moreover, the varying thermal expansion coefficients and Young’s moduli among the minerals induce significant thermal stress at the mineral boundaries. Quartz and biotite with higher thermal expansion coefficients are subjected to compression, whereas plagioclase with smaller coefficients experiences tensile stress. In the molten zone, quartz undergoes transgranular cracking due to the α–β phase transition. The local high temperatures also induce melting phase transitions in biotite and feldspar. This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.
    • loading
    • [1]
      K.Z. Xia, C.X. Chen, X.T. Liu, X.M. Liu, J.H. Yuan, and S. Dang, Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill, Int. J. Rock Mech. Min. Sci., 170(2023), art. No. 105489. doi: 10.1016/j.ijrmms.2023.105489
      [2]
      K.Z. Xia, C.X. Chen, T.L. Wang, Y. Zheng, and Y. Wang, Estimating the geological strength index and disturbance factor in the Hoek–Brown criterion using the acoustic wave velocity in the rock mass, Eng. Geol., 306(2022), art. No. 106745. doi: 10.1016/j.enggeo.2022.106745
      [3]
      X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
      [4]
      E. Jerby, V. Dikhtyar, O. Aktushev, and U. Grosglick, The microwave drill, Science, 298(2002), No. 5593, p. 587. doi: 10.1126/science.1077062
      [5]
      D. P. Lindroth, W. R. Berglund, R. Morrell, and J. R. Blair, Microwave assisted drilling in hard rock, Tunnels and Tunnelling International, 25(1993), No. 6, p. 24.
      [6]
      M.Z. Gao, B.G. Yang, J. Xie, et al., The mechanism of microwave rock breaking and its potential application to rock-breaking technology in drilling, Pet. Sci., 19(2022), No. 3, p. 1110. doi: 10.1016/j.petsci.2021.12.031
      [7]
      P. Hartlieb, M. Toifl, F. Kuchar, R. Meisels, and T. Antretter, Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution, Miner. Eng., 91(2016), p. 34. doi: 10.1016/j.mineng.2015.11.008
      [8]
      Y.L. Zheng and L. He, TBM tunneling in extremely hard and abrasive rocks: Problems, solutions and assisting methods, J. Cent. South Univ., 28(2021), No. 2, p. 454. doi: 10.1007/s11771-021-4615-z
      [9]
      X.T. Feng, J.Y. Zhang, C.X. Yang, et al.,, A novel true triaxial test system for microwave-induced fracturing of hard rocks, J. Rock Mech. Geotech. Eng., 13(2021), No. 5, p. 961. doi: 10.1016/j.jrmge.2021.03.008
      [10]
      X.T. Feng, S.P. Li, C.X. Yang, et al., The influence of the rotary speed of a microwave applicator on hard-rock fracturing effect, Rock Mech. Rock Eng., 55(2022), No. 11, p. 6963. doi: 10.1007/s00603-022-02956-y
      [11]
      W. Wei, Z.S. Shao, Y.Y. Zhang, R.J. Qiao, and J.P. Gao, Fundamentals and applications of microwave energy in rock and concrete processing–A review, Appl. Therm. Eng., 157(2019), art. No. 113751. doi: 10.1016/j.applthermaleng.2019.113751
      [12]
      H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
      [13]
      T. Peinsitt, F. Kuchar, P. Hartlieb, et al., Microwave heating of dry and water saturated basalt, granite and sandstone, Int. J. Min. Miner. Eng., 2(2010), No. 1, art. No. 18. doi: 10.1504/IJMME.2010.031810
      [14]
      F. Hassani, P.M. Nekoovaght, and N. Gharib, The influence of microwave irradiation on rocks for microwave-assisted underground excavation, J. Rock Mech. Geotech. Eng., 8(2016), No. 1, p. 1. doi: 10.1016/j.jrmge.2015.10.004
      [15]
      M. Nicco, E.A. Holley, P. Hartlieb, R. Kaunda, and P.P. Nelson, Methods for characterizing cracks induced in rock, Rock Mech. Rock Eng., 51(2018), No. 7, p. 2075. doi: 10.1007/s00603-018-1445-x
      [16]
      D.A. Jones, S.W. Kingman, D.N. Whittles, and I.S. Lowndes, Understanding microwave assisted breakage, Miner. Eng., 18(2005), No. 7, p. 659. doi: 10.1016/j.mineng.2004.10.011
      [17]
      R. Meisels, M. Toifl, P. Hartlieb, F. Kuchar, and T. Antretter, Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks, Int. J. Miner. Process., 135(2015), p. 40. doi: 10.1016/j.minpro.2015.01.003
      [18]
      T.T. Chen, J.E. Dutrizac, K.E. Haque, W. Wyslouzil, and S. Kashyap, The relative transparency of minerals to microwave radiation, Can. Metall. Q., 23(1984), No. 3, p. 349. doi: 10.1179/cmq.1984.23.3.349
      [19]
      G.M. Lu, Y.H. Li, F. Hassani, and X.W. Zhang, The influence of microwave irradiation on thermal properties of main rock-forming minerals, Appl. Therm. Eng., 112(2017), p. 1523. doi: 10.1016/j.applthermaleng.2016.11.015
      [20]
      Y.L. Zheng, X.B. Zhao, Q.H. Zhao, J.C. Li, and Q.B. Zhang, Dielectric properties of hard rock minerals and implications for microwave-assisted rock fracturing, Geomech. Geophys. Geo Energy Geo Resour., 6(2020), No. 1, art. No. 22. doi: 10.1007/s40948-020-00147-z
      [21]
      G.M. Lu, X.T. Feng, Y.H. Li, F. Hassani, and X.W. Zhang, Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation, Rock Mech. Rock Eng., 52(2019), No. 8, p. 2535. doi: 10.1007/s00603-019-1743-y
      [22]
      M. Nicco, E.A. Holley, P. Hartlieb, and K. Pfaff, Textural and mineralogical controls on microwave-induced cracking in granites, Rock Mech. Rock Eng., 53(2020), No. 10, p. 4745. doi: 10.1007/s00603-020-02189-x
      [23]
      H. Li, S.L. Shi, B.Q. Lin, et al., A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal, Fuel Process. Technol., 189(2019), p. 49. doi: 10.1016/j.fuproc.2019.03.002
      [24]
      B.Q. Lin, H. Li, Z.W. Chen, C.S. Zheng, Y.D. Hong, and Z. Wang, Sensitivity analysis on the microwave heating of coal: A coupled electromagnetic and heat transfer model, Appl. Therm. Eng., 126(2017), p. 949. doi: 10.1016/j.applthermaleng.2017.08.012
      [25]
      S. Li, Y.M. Zhang, Y.Z. Yuan, and P.C. Hu, An insight on the mechanism of efficient leaching of vanadium from vanadium shale induced by microwave-generated hot spots, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 293. doi: 10.1007/s12613-022-2459-7
      [26]
      T. Xu, Y. Yuan, M.J. Heap, G.L. Zhou, M.S.A. Perera, and P.G. Ranjith, Microwave-assisted damage and fracturing of hard rocks and its implications for effective mineral resources recovery, Miner. Eng., 160(2021), art. No. 106663. doi: 10.1016/j.mineng.2020.106663
      [27]
      P. Nekoovaght, N. Gharib and F. Hassani, Numerical simulation and experimental investigation of the influence of 2.45 GHz microwave radiation on hard rock surface, [in] Proceedings of the ISRM International Symposium-8th Asian Rock Mechanics Symposium, Sapporo, Japan, 2014.
      [28]
      M. Pressacco, J.J.J. Kangas, and T. Saksala, Numerical modelling of microwave heating assisted rock fracture, Rock Mech. Rock Eng., 55(2022), No. 2, p. 481. doi: 10.1007/s00603-021-02685-8
      [29]
      Y.L. Zheng and T.W. Sun, A method to derive the dielectric loss factor of minerals from microwave heating rate tests, Measurement, 171(2021), art. No. 108788. doi: 10.1016/j.measurement.2020.108788
      [30]
      G.L. Cui, T.Y. Chen, X.T. Feng, et al. , Coupled multiscale-modeling of microwave-heating-induced fracturing in shales, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104520. doi: 10.1016/j.ijrmms.2020.104520
      [31]
      J.L. Li, R.B. Kaunda, S. Arora, P. Hartlieb, and P.P. Nelson, Fully-coupled simulations of thermally-induced cracking in pegmatite due to microwave irradiation, J. Rock Mech. Geotech. Eng., 11(2019), No. 2, p. 242. doi: 10.1016/j.jrmge.2018.12.007
      [32]
      Q.H. Zhao, X.B. Zhao, Y.L. Zheng, J.C. Li, L. He, and C.J. Zou, Microwave fracturing of water-bearing sandstones: Heating characteristics and bursting, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104495. doi: 10.1016/j.ijrmms.2020.104495
      [33]
      J. Trčková, R. Živor, and R. Přikryl, Physical and mechanical properties of selected amphibolite core samples from the Kola Superdeep Borehole KSDB-3, Terra Nova., 14(2002), No. 5, p. 379. doi: 10.1046/j.1365-3121.2002.00427.x
      [34]
      H. Li, C.S. Zheng, J.X. Lu, et al., Drying kinetics of coal under microwave irradiation based on a coupled electromagnetic, heat transfer and multiphase porous media model, Fuel, 256(2019), art. No. 115966. doi: 10.1016/j.fuel.2019.115966
      [35]
      D.Y. Li, X.L. Su, F.H. Gao, and Z.D. Liu, Experimental studies on physical and mechanical behaviors of heated rocks with pre-fabricated hole exposed to different cooling rates, Geomech. Geophys. Geo Energy Geo Resour., 8(2022), No. 4, art. No. 125. doi: 10.1007/s40948-022-00427-w
      [36]
      J.S. Zeng, Q.J. Hu, Y. Chen, et al., Experimental investigation on structural evolution of granite at high temperature induced by microwave irradiation, Mineral. Petrol., 113(2019), No. 6, p. 745. doi: 10.1007/s00710-019-00681-z
      [37]
      N. Doungkaew and P. Eichhubl, High-temperature fracture growth by constrained sintering of jadeite and quartz aggregates, J. Geophys. Res. Solid Earth, 128(2023), No. 4, art. No. e2022JB025565. doi: 10.1029/2022JB025565
      [38]
      J.X. Huang, G. Xu, Y.P. Liang, G.Z. Hu, and P. Chang, Improving coal permeability using microwave heating technology—a review, Fuel, 266(2020), art. No. 117022. doi: 10.1016/j.fuel.2020.117022
      [39]
      A. Acosta-Vigil, D. London, and G.B. Morgan, Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800°C: Compositional variability of melts during the onset of H2O-saturated crustal anatexis, Contrib. Mineral. Petrol., 151(2006), No. 5, p. 539. doi: 10.1007/s00410-006-0081-8
      [40]
      J.A. Grant, Liquid compositions from low-pressure experimental melting of pelitic rock from Morton Pass, Wyoming, USA, J. Metamorph. Geol., 22(2004), No. 2, p. 65. doi: 10.1111/j.1525-1314.2004.00497.x
      [41]
      S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting—Magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449. doi: 10.1007/s12613-020-1992-5

    Catalog


    • /

      返回文章
      返回