留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  577
  • HTML全文浏览量:  183
  • PDF下载量:  27
  • 被引次数: 0
Yang Liu, Yufeng Liu, Sha Zhang, Lin Zhang, Peng Zhang, Shaorong Zhang, Na Liu, Zhou Li, and Xuanhui Qu, Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2037-2047. https://doi.org/10.1007/s12613-024-2823-x
Cite this article as:
Yang Liu, Yufeng Liu, Sha Zhang, Lin Zhang, Peng Zhang, Shaorong Zhang, Na Liu, Zhou Li, and Xuanhui Qu, Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2037-2047. https://doi.org/10.1007/s12613-024-2823-x
引用本文 PDF XML SpringerLink
研究论文

不同氧化程度FGH96高温合金粉末氧化膜的结构表征




  • 通讯作者:

    章林    E-mail: zlin@ustb.edu.cn

    张鹏    E-mail: zpeng@ustb.edu.cn

    曲选辉    E-mail: quxh@ustb.edu.cn

文章亮点

  • (1) FGH96粉末的氧化膜由非晶氧化物层和氧化物颗粒组成。
  • (2) 由于氧平衡压力的影响,合金元素在基体上呈层状分布。
  • (3) 碳化物的氧化形成富Ti氧化物颗粒。
  • (4) 非晶氧化层随氧含量升高变厚。
  • FGH96 合金粉末的氧化膜结构显著影响高温合金的力学性能。在本研究中,采用高分辨率透射电子显微镜和原子探针技术,对不同氧含量的 FGH96 合金粉末进行了研究,以阐明氧化膜随氧含量的结构演变。能量色散光谱分析揭示了合金粉末氧化膜中存在两种不同的组分:在粉末γ基体上方的非晶态氧化层以及位于碳化物上方的非晶氧化物颗粒。合金元素在非晶态氧化层中呈层状分布,由外到内依次为Ni、Co、Cr和Al/Ti,这主要是由于氧从粉末表面扩散到γ基体内部氧平衡压力降低所导致的。另一方面,粉末表面碳化物的氧化、分解造成在其上方形成富Ti氧化物颗粒。氧含量为140、280和340 ppm的合金粉末氧化膜的厚度分别约为9、14、30 nm。合金元素在三种厚度氧化膜内分布规律类似。这些发现为FGH96合金粉末氧化膜的结构分析提供了宝贵的见解。
  • Research Article

    Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees

    + Author Affiliations
    • The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys. In this study, FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film. Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders: amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide. The alloying elements within the oxide layer showed a laminated distribution, with Ni, Co, Cr, and Al/Ti, which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix. On the other hand, Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase. Comparative analysis of the oxide film with oxygen contents of 140, 280, and 340 ppm showed similar element distributions, while the thickness of the oxide film varies approximately at 9, 14, and 30 nm, respectively. These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.
    • loading
    • Supplementary Information-s12613-024-2823-x.docx
    • [1]
      Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553. doi: 10.1007/s12613-020-2177-y
      [2]
      Q.Z. Yang, X.G. Yang, W.Q. Huang, Y. Shi, and D.Q. Shi, Small fatigue crack propagation rate and behaviours in a powder metallurgy superalloy: Role of stress ratio and local microstructure, Int. J. Fatigue, 160(2022), art. No. 106861. doi: 10.1016/j.ijfatigue.2022.106861
      [3]
      G.E. Maurer, W. Castledine, F.A. Schweizer, and S. Mancuso, Development of HIP consolidated P/M superalloys for conventional forging to gas turbine engine components, [in] Superalloys 1996 (Eighth International Symposium ), Pennsylvania, 1996, p. 645.
      [4]
      S.L. Yang, S.F. Yang, W. Liu, J.S. Li, J.G. Gao, and Y. Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
      [5]
      Z.H. Yao, J. Hou, Y. Chen, W.Y. Xu, H. Jiang, and J.X. Dong, Effect of micron-sized particles on the crack growth behavior of a Ni-based Powder metallurgy superalloy, Mater. Sci. Eng. A, 860(2022), art. No. 144242. doi: 10.1016/j.msea.2022.144242
      [6]
      B. Sun, T.B. Zhang, L. Song, and L. Zhang, Oxidation behavior in static air and its effect on tensile properties of a powder metallurgy EP962NP nickel-based superalloy, J. Alloys Compd., 934(2023), art. No. 167795. doi: 10.1016/j.jallcom.2022.167795
      [7]
      B. Sreenu, R. Sarkar, S.S.S. Kumar, S. Chatterjee, and G.A. Rao, Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications, Mater. Sci. Eng. A, 797(2020), art. No. 140254. doi: 10.1016/j.msea.2020.140254
      [8]
      Z.L. Chi, S. Ren, J.B. Qiao, et al., Failure behaviors and processing maps with failure domains for hot compression of a powder metallurgy Ni-based superalloy, J. Mater. Res. Technol., 20(2022), p. 3860. doi: 10.1016/j.jmrt.2022.08.128
      [9]
      C. Li, J.W. Teng, B.B. Yang, X.J. Ye, J.T. Liu, and Y.P. Li, Correlation between microstructure and mechanical properties of novel Co-Ni-based Powder metallurgy superalloy, Mater. Charact., 181(2021), art. No. 111480. doi: 10.1016/j.matchar.2021.111480
      [10]
      J. Hou, J.X. Dong, Z.H. Yao, H. Jiang, and M.C. Zhang, Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096, Mater. Sci. Eng. A, 724(2018), p. 17. doi: 10.1016/j.msea.2018.03.066
      [11]
      J.E. MacDonald, R.H.U. Khan, M. Aristizabal, K.E.A. Essa, M.J. Lunt, and M.M. Attallah, Influence of powder characteristics on the microstructure and mechanical properties of HIPped CM247LC Ni superalloy, Mater. Des., 174(2019), art. No. 107796. doi: 10.1016/j.matdes.2019.107796
      [12]
      D.L. Shu, S.G. Tian, N. Tian, J. Xie, and Y. Su, Thermodynamic analysis of carbide precipitation and effect of its configuration on creep properties of FGH95 powder nickel-based superalloy, Mater. Sci. Eng. A, 700(2017), p. 152. doi: 10.1016/j.msea.2017.05.108
      [13]
      W.B. Ma, G.Q. Liu, B.F. Hu, Y.W. Zhang, and J.T. Liu, Effect of Hf on carbides of FGH4096 superalloy produced by hot isostatic pressing, Mater. Sci. Eng. A, 587(2013), p. 313. doi: 10.1016/j.msea.2013.05.015
      [14]
      S. Antonov, W. Chen, J.J. Huo, et al., MC carbide characterization in high refractory content powder-processed Ni-based superalloys, Metall. Mater. Trans. A, 49(2018), No. 6, p. 2340. doi: 10.1007/s11661-018-4587-2
      [15]
      Y. Liu, Y.F. Liu, S. Zhang, et al., The genetic evolution behavior of carbides in powder metallurgy FGH96 Ni-based superalloys, J. Mater. Sci., 58(2023), No. 47, p. 17950. doi: 10.1007/s10853-023-09161-4
      [16]
      Q. Zhang, L. Zheng, H. Yuan, Z. Li, G.Q. Zhang, and J.X. Xie, Effects of composition and particle size on the surface state and degassing behavior of nickel-based superalloy powders, Appl. Surf. Sci., 556(2021), art. No. 149793. doi: 10.1016/j.apsusc.2021.149793
      [17]
      W.Y. Xu, Y.F. Liu, H. Yuan, Z. Li, and G.Q. Zhang, Surface characterization of nickel-base superalloy powder, [in] Y. Han, ed., Physics and Engineering of Metallic Materials, Springer, Singapore, 2019, p. 561.
      [18]
      L.M. Tan, Y.P. Li, C.Z. Liu, et al., The evolution history of superalloy powders during hot consolidation and plastic deformation, Mater. Charact., 140(2018), p. 30. doi: 10.1016/j.matchar.2018.03.039
      [19]
      H.S. Kitaguchi, H.Y. Li, H.E. Evans, et al., Oxidation ahead of a crack tip in an advanced Ni-based superalloy, Acta Mater., 61(2013), No. 6, p. 1968. doi: 10.1016/j.actamat.2012.12.017
      [20]
      R. Jiang, F. Pierron, S. Octaviani, and P.A.S. Reed, Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by SEM-DIC in an advanced disc alloy, Mater. Sci. Eng. A, 699(2017), p. 128. doi: 10.1016/j.msea.2017.05.091
      [21]
      Q. Zhang, L. Zheng, H. Yuan, Z. Li, G.Q. Zhang, and J.X. Xie, Effect of humid atmosphere on the microstructure and mechanical properties of a PM Ni-based superalloy: From Powders to bulk alloys, Mater. Charact., 202(2023), art. No. 113019. doi: 10.1016/j.matchar.2023.113019
      [22]
      W.Y. Xu, Z. Li, Y.F. Liu, L.C. Zhang, and G.Q. Zhang, Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders, Powder Metall. Technol., 38(2020), No. 3, p. 192. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
      [23]
      B. Lynch, S. Neupane, F. Wiame, A. Seyeux, V. Maurice, and P. Marcus, An XPS and ToF-SIMS study of the passive film formed on a model FeCrNiMo stainless steel surface in aqueous media after thermal pre-oxidation at ultra-low oxygen pressure, Appl. Surf. Sci., 554(2021), art. No. 149435. doi: 10.1016/j.apsusc.2021.149435
      [24]
      E. Hryha, C. Gierl, L. Nyborg, H. Danninger, and E. Dudrova, Surface composition of the steel powders pre-alloyed with manganese, Appl. Surf. Sci., 256(2010), No. 12, p. 3946. doi: 10.1016/j.apsusc.2010.01.055
      [25]
      E. Hryha, R. Shvab, M. Bram, M. Bitzer, and L. Nyborg, Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition, Appl. Surf. Sci., 388(2016), p. 294. doi: 10.1016/j.apsusc.2016.01.046
      [26]
      D. Riabov, E. Hryha, M. Rashidi, S. Bengtsson, and L. Nyborg, Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturing, Surf. Interface Anal., 52(2020), No. 11, p. 694. doi: 10.1002/sia.6846
      [27]
      B. Fleischmann, J.P. Chateau-Cornu, L. Dembinski, et al., Influence of particle size on surface oxide of 316L stainless steel powders for hot isostatic pressing, Materialia, 22(2022), art. No. 101405. doi: 10.1016/j.mtla.2022.101405
      [28]
      Y.D. Zhai, Y.H. Chen, Y.S. Zhao, et al., Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation, Acta Mater., 215(2021), art. No. 116991. doi: 10.1016/j.actamat.2021.116991
      [29]
      J.T. Shu, Z.Q. Dong, C. Zheng, et al., High-throughput experiment-assisted study of the alloying effects on oxidation of Nb-based alloys, Corros. Sci., 204(2022), art. No. 110383. doi: 10.1016/j.corsci.2022.110383
      [30]
      N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006, p. 16; p. 101.
      [31]
      B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, and Y.Y. Li, Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints, Mater. Des., 157(2018), p. 437. doi: 10.1016/j.matdes.2018.08.003
      [32]
      W.W. Ding, W. Zhan, C. Gang, et al., Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization, Corros. Sci., 178(2021), art. No. 109080. doi: 10.1016/j.corsci.2020.109080
      [33]
      J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100 °C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
      [34]
      Z.Y. Zhao, X.H. Yu, C. Wang, S.Y. Yao, Q. Qi, and L.J. Wang, Oxidation mechanism of in situ TiC/Ni composites at 1073K, Corros. Sci., 194(2022), art. No. 109958. doi: 10.1016/j.corsci.2021.109958
      [35]
      K.F. Cai, C.W. Nan, R.Z. Yuan, and X.M. Min, The flexural strength at high temperature and oxidation behaviour of (Nb,Ti)C–Ni composite, Ceram. Int., 22(1996), No. 2, p. 167. doi: 10.1016/0272-8842(95)00075-5
      [36]
      Y. Liu, S. Zhang, L. Zhang, P. Zhang, S.R. Zhang, and X.H. Qu, A new perspective about the surface structure of FGH96 superalloys powders, Vacuum, 220(2024), art. No. 112838. doi: 10.1016/j.vacuum.2023.112838

    Catalog


    • /

      返回文章
      返回