留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(6)

数据统计

分享

计量
  • 文章访问数:  405
  • HTML全文浏览量:  177
  • PDF下载量:  25
  • 被引次数: 0
Zihan Hou, Lisheng Guo, Xianlong Fu, Hongxian Zheng, Yuqing Dai, Zhixing Wang, Hui Duan, Mingxia Dong, Wenjie Peng, Guochun Yan, and Jiexi Wang, Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2244-2252. https://doi.org/10.1007/s12613-024-2824-9
Cite this article as:
Zihan Hou, Lisheng Guo, Xianlong Fu, Hongxian Zheng, Yuqing Dai, Zhixing Wang, Hui Duan, Mingxia Dong, Wenjie Peng, Guochun Yan, and Jiexi Wang, Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2244-2252. https://doi.org/10.1007/s12613-024-2824-9
引用本文 PDF XML SpringerLink
研究论文

喷雾热解法制备钨替代钴的高镍正极材料


  • 通讯作者:

    彭文杰    E-mail: pwj_csu@163.com

    王接喜    E-mail: wangjiexikeen@csu.edu.cn

文章亮点

  • (1) 系统研究了偏钨酸铵的热解行为。
  • (2) 合成了具有优异电化学性能的钨替代高镍低钴正极材料。
  • (3) 研究了钨替代改善材料电化学性能的机理。
  • 钴在高容量高镍正极材料中起着稳定晶格结构的作用。然而,其高昂的成本和毒性仍然限制了其后续发展。通常可以通过过渡金属置换以降低Co含量。然而由于各元素浓度和沉积速率存在差异,传统共沉淀法无法满足多元素共沉淀和元素均匀分布的要求。本文使用喷雾热解法制备LiNi0.9Co0.1−xWxO2 (LNCW),并且分析了偏钨酸铵的热解行为与W替代Co的可行性。所得含Ni−Co−W的氧化物前驱体元素分布均匀,有利于W在最终材料中的均匀替代。随着W的替代,材料一次颗粒尺寸从338.06 nm减小到71.76 nm,锂镍混排程度最低低至3.34%。表现出显著改善的电化学性能。优化条件下,LiNi0.9Co0.0925W0.0075O2在200次循环后的容量保持率高达82.7%。这项工作表明,W可以在一定程度上弥补钴缺乏造成的损失。
  • Research Article

    Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials

    + Author Affiliations
    • Cobalt (Co) serves as a stabilizer in the lattice structure of high-capacity nickel (Ni)-rich cathode materials. However, its high cost and toxicity still limit its development. In general, it is possible to perform transition metal substitution to reduce the Co content. However, the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate. In this work, spray pyrolysis was used to prepare LiNi0.9Co0.1−xWxO2 (LNCW). In this regard, the pyrolysis behavior of ammonium metatungstate was analyzed, together with the substitution of W for Co. With the possibility of spray pyrolysis, the Ni–Co–W-containing oxide precursor presents a homogeneous distribution of metal elements, which is beneficial for the uniform substitution of W in the final materials. It was observed that with W substitution, the size of primary particles decreased from 338.06 to 71.76 nm, and cation disordering was as low as 3.34%. As a consequence, the prepared LNCW exhibited significantly improved electrochemical performance. Under optimal conditions, the lithium-ion battery assembled with LiNi0.9Co0.0925W0.0075O2 (LNCW-0.75mol%) had an improved capacity retention of 82.7% after 200 cycles, which provides insight into the development of Ni-rich low-Co materials. This work presents that W can compensate for the loss caused by Co deficiency to a certain extent.
    • loading
    • [1]
      B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334(2011), No. 6058, p. 928. doi: 10.1126/science.1212741
      [2]
      W. Li, A. Sasaki, H. Oozu, et al., Electron transport mechanism of tungsten trioxide powder thin film studied by investigating effect of annealing on resistivity, Microelectron. Reliab., 55(2015), No. 2, p. 407. doi: 10.1016/j.microrel.2014.10.012
      [3]
      N. Nitta, F.X. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(2015), No. 5, p. 252. doi: 10.1016/j.mattod.2014.10.040
      [4]
      J.J. Xu, T.P. Pollard, C.Y. Yang, et al., Lithium halide cathodes for Li metal batteries, Joule, 7(2023), No. 1, p. 83. doi: 10.1016/j.joule.2022.11.002
      [5]
      L. Yu, T.C. Liu, R. Amine, J.G. Wen, J. Lu, and K. Amine, High nickel and No cobalt─The pursuit of next-generation layered oxide cathodes, ACS Appl. Mater. Interfaces, 14(2022), No. 20, p. 23056. doi: 10.1021/acsami.1c22091
      [6]
      J.M. Zheng, M. Gu, A. Genc, et al., Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution, Nano Lett., 14(2014), No. 5, p. 2628. doi: 10.1021/nl500486y
      [7]
      L.F. Wang, J.Y. Wang, L.Y. Wang, M.J. Zhang, R. Wang, and C. Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 925. doi: 10.1007/s12613-022-2446-z
      [8]
      A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
      [9]
      J. Zhu, S. Sharifi-Asl, J.C. Garcia, et al., Atomic-level understanding of surface reconstruction based on Li[Ni xMn yCo1– x y]O2 single-crystal studies, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4799. doi: 10.1021/acsaem.0c00411
      [10]
      D. Streich, C. Erk, A. Guéguen, P. Müller, F.F. Chesneau, and E.J. Berg, Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni–Co–Mn oxides, J. Phys. Chem. C, 121(2017), No. 25, p. 13481. doi: 10.1021/acs.jpcc.7b02303
      [11]
      T.C. Liu, L. Yu, J.J. Liu, et al., Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries, Nat. Energy, 6(2021), p. 277. doi: 10.1038/s41560-021-00776-y
      [12]
      K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 311(2006), No. 5763, p. 977. doi: 10.1126/science.1122152
      [13]
      W.M. Seong, K. Yoon, M.H. Lee, S.K. Jung, and K. Kang, Unveiling the intrinsic cycle reversibility of a LiCoO2 electrode at 4.8-V cutoff voltage through subtractive surface modification for lithium-ion batteries, Nano Lett., 19(2019), No. 1, p. 29. doi: 10.1021/acs.nanolett.8b02902
      [14]
      L.S. Ni, H.Y. Chen, J.Q. Gao, et al., Calcium-induced pinning effect for high-performance Co-free Ni-rich NMA layered cathode, Nano Energy, 115(2023), art. No. 108743. doi: 10.1016/j.nanoen.2023.108743
      [15]
      G.T. Park, H.H. Sun, T.C. Noh, et al., Nanostructured Co-free layered oxide cathode that affords fast-charging lithium-ion batteries for electric vehicles, Adv. Energy Mater., 12(2022), No. 48, art. No. 2202719. doi: 10.1002/aenm.202202719
      [16]
      M. Chen, W.L. Ao, C.S. Dai, T. Tao, and J. Yang, Synthesis and electrochemical properties of LiNi0.8Al0.2– xTi xO2 cathode materials by an ultrasonic-assisted co-precipitation method, Int. J. Miner. Metall. Mater., 16(2009), No. 4, p. 452. doi: 10.1016/S1674-4799(09)60079-0
      [17]
      Y. Xia, J.M. Zheng, C.M. Wang, and M. Gu, Designing principle for Ni-rich cathode materials with high energy density for practical applications, Nano Energy, 49(2018), p. 434. doi: 10.1016/j.nanoen.2018.04.062
      [18]
      L.H. Liu, M.C. Li, L.H. Chu, et al., Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries, Prog. Mater. Sci., 111(2020), art. No. 100655. doi: 10.1016/j.pmatsci.2020.100655
      [19]
      J. Leng, J.P. Wang, W.J. Peng, et al., Highly-dispersed submicrometer single-crystal nickel-rich layered cathode: Spray synthesis and accelerated lithium-ion transport, Small, 17(2021), No. 14, art. No. 2006869. doi: 10.1002/smll.202006869
      [20]
      Y. Li, X.H. Li, Z.X. Wang, H.J. Guo, and J.X. Wang, Spray pyrolysis synthesis of nickel-rich layered cathodes LiNi1−2 xCo xMn xO2 (x=0.075, 0.05, 0.025) for lithium-ion batteries, J. Energy Chem., 27(2018), No. 2, p. 447. doi: 10.1016/j.jechem.2017.11.025
      [21]
      T. Li, X.H. Li, Z.X. Wang, and H.J. Guo, A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: A case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2, J. Power Sources, 342(2017), p. 495. doi: 10.1016/j.jpowsour.2016.12.095
      [22]
      K.B. Fang, Q. Xie, C.Y. Wang, et al., Understanding the feasibility of manganese substitution for cobalt in the synthesis of nickel-rich and cobalt-free cathode materials, ACS Appl. Energy Mater., 4(2021), No. 7, p. 7190. doi: 10.1021/acsaem.1c01292
      [23]
      Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145. doi: 10.1021/nl304558t
      [24]
      T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 ( ${\mathrm{R}}\bar 3{\mathrm{m}} $) for 4 volt secondary lithium cells, J. Electrochem. Soc., 140(1993), No. 7, p. 1862. doi: 10.1149/1.2220730
      [25]
      Y. Gao, M.V. Yakovleva, and W.B. Ebner, Novel LiNi1– xTi x/2Mg x/2O2 compounds as cathode materials for safer lithium-ion batteries, Electrochem. Solid-State Lett., 1(1999), No. 3, art. No. 117. doi: 10.1149/1.1390656
      [26]
      P. Fu, Y.M. Zhao, Y.Z. Dong, X.N. An, and G.P. Shen, Low temperature solid-state synthesis routine and mechanism for Li3V2(PO4)3 using LiF as lithium precursor, Electrochim. Acta, 52(2006), No. 3, p. 1003. doi: 10.1016/j.electacta.2006.06.039
      [27]
      C.X. Geng, D. Rathore, D. Heino, et al., Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials, Adv. Energy Mater., 12(2022), No. 6, art. No. 2103067. doi: 10.1002/aenm.202103067
      [28]
      K. Kang and G. Ceder, Factors that affect Li mobility in layered lithium transition metal oxides, Phys. Rev. B, 74(2006), No. 9, art. No. 094105. doi: 10.1103/PhysRevB.74.094105
      [29]
      D.W. Wang, C.B. Zhu, Y.P. Fu, X.L. Sun, and Y. Yang, Interfaces in garnet-based all-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 39, art. No. 2001318. doi: 10.1002/aenm.202001318
      [30]
      Y.Y. Sun, P.Y. Hou, and L.C. Zhang, Mitigating the microcracks of high-Ni oxides by in situ formation of binder between anisotropic grains for lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 12, p. 13923. doi: 10.1021/acsami.9b23470
      [31]
      J.H. Park, K. Park, D. Han, et al., Structure- and porosity-tunable, thermally reactive metal organic frameworks for high-performance Ni-rich layered oxide cathode materials with multi-scale pores, J. Mater. Chem. A, 7(2019), No. 25, p. 15190. doi: 10.1039/C9TA02462J
      [32]
      X.X. Zhao, B.S. Liu, J.L. Yang, J.J. Hou, Y.X. Wang, and Y.L. Zhu, Synthesizing LiNi0.5Co0.2Mn0.3O2 with microsized peanut-like structure for enhanced electrochemical properties of lithium ion batteries, J. Alloys Compd., 832(2020), art. No. 154464. doi: 10.1016/j.jallcom.2020.154464
      [33]
      Z. Gan, G. Hu, Z. Peng, Y. Cao, H. Tong, and K. Du, Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB, Appl. Surf. Sci., 481(2019 ) , p. 1228.
      [34]
      S. Lee, J. Hwang, C. Park, S. Ahn, and H. Ahn, Efficient and scalable encapsulation process of highly conductive 1T-MoS2 nanosheets on Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials for high-performance lithium-ion batteries, Chem. Eng. J., 470(2023), art. No. 144209. doi: 10.1016/j.cej.2023.144209
      [35]
      H.L. Zhang, F. Omenya, P.F. Yan, et al., Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries, ACS Energy Lett., 2(2017), No. 11, p. 2607. doi: 10.1021/acsenergylett.7b00907
      [36]
      U.H. Kim, D.W. Jun, K.J. Park, et al., Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries, Energy Environ. Sci., 11(2018), No. 5, p. 1271. doi: 10.1039/C8EE00227D
      [37]
      T. He, Y. Lu, Y.F. Su, et al., Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries, ChemSusChem, 11(2018), No. 10, p. 1639. doi: 10.1002/cssc.201702451
      [38]
      T.T. Dao, S. Park, S. Sarwar, et al., Novel flexible photochromic device with unprecedented fast-bleaching kinetic via platinum decoration on WO3 layer, Sol. Energy Mater. Sol. Cells, 231(2021), art. No. 111316. doi: 10.1016/j.solmat.2021.111316
      [39]
      S.Y. Peng, X.B. Kong, J.Y. Li, J. Zeng, and J.B. Zhao, Alleviating the storage instability of LiNi0.8Co0.1Mn0.1O2 cathode materials by surface modification with poly(acrylic acid), ACS Sustainable Chem. Eng., 9(2021), No. 22, p. 7466. doi: 10.1021/acssuschemeng.1c00802
      [40]
      B.Z. You, J.P. Sun, Y. Jing, et al., A fresh one-step spray pyrolysis approach to prepare nickel-rich cathode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 15(2023), No. 11, p. 14587. doi: 10.1021/acsami.3c00607
      [41]
      S. Gao, X.W. Zhan, and Y.T. Cheng, Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries, J. Power Sources, 410-411(2019), p. 45. doi: 10.1016/j.jpowsour.2018.10.094
      [42]
      H.H. Ryu, K.J. Park, D.R. Yoon, A. Aishova, C.S. Yoon, and Y.K. Sun, Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability, Adv. Energy Mater., 9(2019), No. 44, art. No. 1902698. doi: 10.1002/aenm.201902698
      [43]
      H.H. Ryu, G.T. Park, C.S. Yoon, and Y.K. Sun, Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries, J. Mater. Chem. A, 7(2019), No. 31, p. 18580. doi: 10.1039/C9TA06402H
      [44]
      F. Wu, N. Liu, L. Chen, et al., Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability, Nano Energy, 59(2019), p. 50. doi: 10.1016/j.nanoen.2019.02.027
      [45]
      Z.Y. Zhang, S. Zhang, S.X. Geng, S.B. Zhou, Z.L. Hu, and J.Y. Luo, Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries, Energy Storage Mater., 51(2022), p. 19. doi: 10.1016/j.ensm.2022.06.025
      [46]
      Q. Sun, G.F. Zeng, J. Li, et al., Is soft carbon a more suitable match for SiO x in Li-ion battery anodes? Small, 19(2023), No. 37, art. No. e2302644. doi: 10.1002/smll.202302644
      [47]
      L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [48]
      P.Y. Hou, J.M. Yin, M. Ding, J.Z. Huang, and X.J. Xu, Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives, Small, 13(2017), No. 45, art. No.1701802. doi: 10.1002/smll.201701802
      [49]
      M. Weiss, R. Ruess, J. Kasnatscheew, et al., Fast charging of lithium-ion batteries: A review of materials aspects, Adv. Energy Mater., 11(2021), No. 33, art. No. 2101126. doi: 10.1002/aenm.202101126

    Catalog


    • /

      返回文章
      返回