留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2780
  • HTML全文浏览量:  204
  • PDF下载量:  58
  • 被引次数: 0
Dengfeng Zhao, Shiyu Zhang, and Yingliang Zhao, Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2136-2147. https://doi.org/10.1007/s12613-024-2825-8
Cite this article as:
Dengfeng Zhao, Shiyu Zhang, and Yingliang Zhao, Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2136-2147. https://doi.org/10.1007/s12613-024-2825-8
引用本文 PDF XML SpringerLink
研究论文

含砷生物浸出渣热处理后在膏体充填体中的应用研究:结构改性、胶凝性能和环境评价



  • 通讯作者:

    张世玉    E-mail: zhangshiyu@tyut.edu.cn

文章亮点

  • (1) 煅烧热处理可以显著改变含砷生物浸出残渣的微观结构,进而影响其水化性能;
  • (2) 含砷生物浸出残渣制备的超硫酸化水泥的水化产物主要以C–A–S–H和钙矾石为主;
  • (3) 含砷生物浸出残渣在600°C煅烧处理后,其准备的试件在60天养护后表现出较高抗压强度和较强的砷固定能力。
  • 含砷生物浸出残渣中存在的大量砷,由于其固有的不稳定性和对浸出的敏感性而引起不可忽视的环境问题。鉴于含砷生物浸出残渣含有丰富的硫酸钙,其表现出较好的工业应用前景。本研究深入探讨了利用含砷生物浸出残渣作为硫酸盐的来源生产超硫酸化水泥的可行性,为水泥浆胶结膏体充填体研制一种新型的胶凝材料。在150、350、600和800°C等温度下对含砷生物浸出残渣进行热处理,以改变其性能。分析含砷生物浸出残渣内含砷的矿物相变及其化学成分的变化。随后,研究了利用含砷生物浸出残渣制备超硫酸化水泥的水化特性,包括反应动力学、凝结时间、强度演化和微观结构。试验结果表明,热处理改变了含砷生物浸出残渣中硫酸钙的结构,从而影响了所制备水泥的性能。值得注意的是,在600°C下煅烧热处理对早期和长期强度都表现出较好的改性效果。这主要归因于胶凝体系水化反应产物的增加和致密微观结构的形成。此外,热处理引起的含砷生物浸出残渣中化学元素砷的改性对制备的胶凝材料的砷固定能力影响有限。
  • Research Article

    Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment

    + Author Affiliations
    • The substantial arsenic (As) content present in arsenic-containing bio-leaching residue (ABR) presents noteworthy environmental challenges attributable to its inherent instability and susceptibility to leaching. Given its elevated calcium sulfate content, ABR exhibits considerable promise for industrial applications. This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement (SSC), offering an innovative binder for cemented paste backfill (CPB). Thermal treatment at varying temperatures of 150, 350, 600, and 800°C was employed to modify ABR’s performance. The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR. Subsequently, the hydration characteristics of SSC utilizing ABR, with or without thermal treatment, were studied, encompassing reaction kinetics, setting time, strength development, and microstructure. The findings revealed that thermal treatment changed the calcium sulfate structure in ABR, consequently impacting the resultant sample performance. Notably, calcination at 600°C demonstrated optimal modification effects on both early and long-term strength attributes. This enhanced performance can be attributed to the augmented formation of reaction products and a densified microstructure. Furthermore, the thermal treatment elicited modifications in the chemical As fractions within ABR, with limited impact on the As immobilization capacity of the prepared binders.
    • loading
    • Supplementary Information-s12613-024-2825-8.docx
    • [1]
      D.R. Zhang, J.L. Xia, Z.Y. Nie, et al., Mechanism by which ferric iron promotes the bioleaching of arsenopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans, Process Biochem, 81(2019), . 11. doi: 10.1016/j.procbio.2019.03.004
      [2]
      H. Ciftci and A. Akcil, Biohydrometallurgy in Turkish gold mining: First shake flask and bioreactor studies, Miner. Eng., 46-47(2013), p. 25. doi: 10.1016/j.mineng.2013.03.020
      [3]
      M.E.L. Arrascue and J. van Niekerk, Biooxidation of arsenopyrite concentrate using BIOX® process: Industrial experience in Tamboraque, Peru, Hydrometallurgy, 83(2006), No. 1-4, p. 90. doi: 10.1016/j.hydromet.2006.03.050
      [4]
      Y.K. Li, X. Zhu, X.J. Qi, et al., Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel, Chem. Eng. J., 394(2020), art. No. 124833. doi: 10.1016/j.cej.2020.124833
      [5]
      X. Sun, J. Li, X. Sun, et al., Efficient stabilization of arsenic in the arsenic-bearing lime-ferrate sludge by zero valent iron-enhanced hydrothermal treatment, Chem. Eng. J., 421(2021), art. No. 129683. doi: 10.1016/j.cej.2021.129683
      [6]
      B. Peng, J. Lei, X.B. Min, L.Y. Chai, Y.J. Liang, and Y. You, Physicochemical properties of arsenic-bearing lime–ferrate sludge and its leaching behaviors, Trans. Nonferrous Met. Soc. China, 27(2017), No. 5, p. 1188. doi: 10.1016/S1003-6326(17)60140-7
      [7]
      D.Z. Yang, A. Sasaki, and M. Endo, Reclamation of a waste arsenic-bearing gypsum as a soil conditioner via acid treatment and subsequent Fe(II)As stabilization, J. Cleaner Prod., 217(2019), p. 22. doi: 10.1016/j.jclepro.2019.01.217
      [8]
      L.U.D. Tambara, M. Cheriaf, J.C. Rocha, A. Palomo, and A. Fernández-Jiménez, Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration, Cem. Concr. Res., 128(2020), art. No. 105953. doi: 10.1016/j.cemconres.2019.105953
      [9]
      V.P. Mehrotra, A.S.R. Sai, and P.C. Kapur, Plaster of Paris activated supersulfated slag cement, Cem. Concr. Res., 12(1982), No. 4, p. 463. doi: 10.1016/0008-8846(82)90061-8
      [10]
      B. Gracioli, C. Angulski da Luz, C.S. Beutler, et al., Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements, Constr. Build. Mater., 262(2020), art. No. 119961. doi: 10.1016/j.conbuildmat.2020.119961
      [11]
      W.T. Xu, G.C. Song, K.X. Hu, Q. Song, and Q. Yao, The redistribution of arsenic during the interaction between high-temperature flue gas and ash, Fuel Process. Technol., 212(2021), art. No. 106641. doi: 10.1016/j.fuproc.2020.106641
      [12]
      D.Z. Yang, A. Sasaki, and M. Endo, Reclamation of an arsenic-bearing gypsum via acid washing and CaO–As stabilization involving svabite formation in thermal treatment, J. Environ. Manage., 231(2019), p. 811. doi: 10.1016/j.jenvman.2018.10.119
      [13]
      A. Saedi, A. Jamshidi-Zanjani, and A.K. Darban, A review of additives used in the cemented paste tailings: Environmental aspects and application, J. Environ. Manage., 289(2021), art. No. 112501. doi: 10.1016/j.jenvman.2021.112501
      [14]
      H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601. doi: 10.1016/j.jclepro.2018.04.041
      [15]
      C.P. Li, X. Li, and Z.E. Ruan, Rheological properties of a multiscale granular system during mixing of cemented paste backfill: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p.1444. doi: 10.1007/s12613-023-2601-1
      [16]
      B. Koohestani, P. Mokhtari, E. Yilmaz, F. Mahdipour, and A.K. Darban, Geopolymerization mechanism of binder-free mine tailings by sodium silicate, Constr. Build. Mater., 268(2021), art. No. 121217. doi: 10.1016/j.conbuildmat.2020.121217
      [17]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [18]
      L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
      [19]
      X.Y. Zhang, T.R. Cao, L. Liu, B.Y. Bu, YP. Ke, and Q.Q. Du, Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl2·6H2O/expanded vermiculite shape stabilized phase change materials, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 250. doi: 10.1007/s12613-022-2503-7
      [20]
      Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608. doi: 10.1016/j.jenvman.2021.112608
      [21]
      S.Y. Ouyang, Y.L. Huang, N. Zhou, et al., Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1502. doi: 10.1007/s12613-023-2617-6
      [22]
      D.N. Zhang, Z.D. Yuan, S.F. Wang, Y.F. Jia, and G.P. Demopoulos, Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry, J. Hazard. Mater., 300(2015), p. 272. doi: 10.1016/j.jhazmat.2015.07.015
      [23]
      S.R. Yang, Fundamental and Industrializaiton Investigation on Biooxidation of Arsenic-bearing Refractory Gold Ore [Dissertation], Central South University, Changsha, 2004.
      [24]
      W.X. Cao, W. Yi, J.H. Peng, J. Li, and S.H. Yin, Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature, J. Build. Eng., 45(2022), art. No. 103511. doi: 10.1016/j.jobe.2021.103511
      [25]
      X.B. Li and Q. Zhang, Dehydration behaviour and impurity change of phosphogypsum during calcination, Constr. Build. Mater., 311(2021), art. No. 125328. doi: 10.1016/j.conbuildmat.2021.125328
      [26]
      S.C.B. Myneni, S.J. Traina, G.A. Waychunas, and T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite, Geochim. Cosmochim. Acta, 62(1998), No. 21-22, p. 3499. doi: 10.1016/S0016-7037(98)00221-X
      [27]
      R.X. He, S.Y. Zhang, X.L. Zhang, Z.H. Zhang, Y.L. Zhao, and H.X. Ding, Copper slag: The leaching behavior of heavy metals and its applicability as a supplementary cementitious material, J. Environ. Chem. Eng., 9(2021), No. 2, art. No. 105132. doi: 10.1016/j.jece.2021.105132
      [28]
      M. Mahedi, B. Cetin, and A.Y. Dayioglu, Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils, Waste Manage., 95(2019), p. 334. doi: 10.1016/j.wasman.2019.06.018
      [29]
      R.J. Hou, L.W. Wang, D. O’Connor, D.C.W. Tsang, J. Rinklebe, and D.Y. Hou, Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land, Environ. Int., 144(2020), art. No. 106040. doi: 10.1016/j.envint.2020.106040
      [30]
      A.A. Qureshi, T.G. Kazi, J.A. Baig, M.B. Arain, and H.I. Afridi, Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass, Chemosphere, 255(2020), art. No. 126960. doi: 10.1016/j.chemosphere.2020.126960
      [31]
      J.W. Bullard, H.M. Jennings, R.A. Livingston, et al., Mechanisms of cement hydration, Cem. Concr. Res., 41(2011), No. 12, p. 1208. doi: 10.1016/j.cemconres.2010.09.011
      [32]
      D. Marchon, P. Juilland, E. Gallucci, L. Frunz, and R.J. Flatt, Molecular and submolecular scale effects of comb-copolymers on tri-calcium silicate reactivity: Toward molecular design, J. Am. Ceram. Soc., 100(2017), No. 3, p. 817. doi: 10.1111/jace.14695
      [33]
      Y.L. Zhao, J.P. Qiu, J. Xing, and X.G. Sun, Chemical activation of binary slag cement with low carbon footprint, J. Cleaner Prod., 267(2020), art. No. 121455. doi: 10.1016/j.jclepro.2020.121455
      [34]
      S. Ioannou, L. Reig, K. Paine, and K. Quillin, Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement, Cem. Concr. Res., 56(2014), p. 75. doi: 10.1016/j.cemconres.2013.09.015
      [35]
      M.C.G. Juenger, F. Winnefeld, J.L. Provis, and J.H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res., 41(2011), No. 12, p. 1232. doi: 10.1016/j.cemconres.2010.11.012
      [36]
      R.X. Magallanes-Rivera and J.I. Escalante-García, Hemihydrate or waste anhydrite in composite binders with blast-furnace slag: Hydration products, microstructures and dimensional stability, Constr. Build. Mater., 71(2014), p. 317. doi: 10.1016/j.conbuildmat.2014.08.054
      [37]
      K. Cabrera-Luna, E.E. Maldonado-Bandala, D. Nieves-Mendoza, P. Castro-Borges, and J.I.E. García, Novel low emissions supersulfated cements of pumice in concrete; mechanical and electrochemical characterization, J. Cleaner Prod., 272(2020), art. No. 122520. doi: 10.1016/j.jclepro.2020.122520
      [38]
      S. Adu-Amankwah, M. Zajac, C. Stabler, B. Lothenbach, and L. Black, Influence of limestone on the hydration of ternary slag cements, Cem. Concr. Res., 100(2017), p. 96. doi: 10.1016/j.cemconres.2017.05.013
      [39]
      K. Gijbels, H. Nguyen, P. Kinnunen, et al., Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag, J. Cleaner Prod., 237(2019), art. No. 117793. doi: 10.1016/j.jclepro.2019.117793
      [40]
      H. Nguyen, P. Kinnunen, K. Gijbels, et al., Ettringite-based binder from ladle slag and gypsum – The effect of citric acid on fresh and hardened state properties, Cem. Concr. Res., 123(2019), art. No. 105800. doi: 10.1016/j.cemconres.2019.105800
      [41]
      K. Scrivener, R. Snellings, and B. Lothenbach, eds., A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press, Florida, 2018.
      [42]
      B. Guo, B. Liu, J. Yang, and S.G. Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review, J. Environ. Manage., 193(2017), p. 410. doi: 10.1016/j.jenvman.2017.02.026
      [43]
      P. Randall and S. Chattopadhyay, Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes, J. Hazard. Mater., 114(2004), No. 1-3, p. 211. doi: 10.1016/j.jhazmat.2004.08.010
      [44]
      M. Vespa, R. Dähn, and E. Wieland, Competition behaviour of metal uptake in cementitious systems: An XRD and EXAFS investigation of Nd- and Zn-loaded 11 Å tobermorite, Phys. Chem. Earth Parts A/B/C, 70-71(2014), p. 32. doi: 10.1016/j.pce.2014.01.001
      [45]
      E.C. Gillispie, S.T. Mergelsberg, T. Varga, et al., Competitive $ {\mathrm{T}\mathrm{c}\mathrm{O}}_{4}^{-} $, $ {\mathrm{I}\mathrm{O}}_{3}^{-} $, and $ {\mathrm{C}\mathrm{r}\mathrm{O}}_{4}^{2-} $ incorporation into ettringite, Environ. Sci. Technol., 55(2021), No. 2, p. 1057. doi: 10.1021/acs.est.0c06707

    Catalog


    • /

      返回文章
      返回