留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(14)

数据统计

分享

计量
  • 文章访问数:  191
  • HTML全文浏览量:  77
  • PDF下载量:  21
  • 被引次数: 0
Binghui Hu, Yu Lei, Hang Li, Ziyi Wang, Chao Yu, and Guozheng Kang, Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2827-6
Cite this article as:
Binghui Hu, Yu Lei, Hang Li, Ziyi Wang, Chao Yu, and Guozheng Kang, Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2827-6
引用本文 PDF XML SpringerLink
研究论文

铸造AZ91镁合金室温多轴棘轮行为的实验研究


  • 通讯作者:

    康国政    E-mail: guozhengkang@swjtu.edu.cn

文章亮点

  • (1) 针对铸造AZ91镁合金,系统地开展了应力控制的单轴路径、纯扭转路径和多轴加载路径循环加载实验。
  • (2) 揭示了铸造AZ91镁合金的多轴棘轮行为演化特征及其应力水平和加载路径依赖性。
  • (3) 讨论了铸造镁合金和挤压镁合金多轴循环变形行为(尤其是棘轮行为)的不同之处。
  • 本研究采用薄壁圆管状试样对铸造AZ91镁合金的室温多轴棘轮行为开展了一系列实验研究,讨论了不同轴向–扭向组合加载路径下该材料的多轴棘轮行为演化特征,揭示了铸造镁合金多轴棘轮行为的路径相关性。研究发现:在非比例多轴加载路径下,铸造AZ91镁合金表现出明显的非比例附加软化效应,其轴向的棘轮行为与单轴加载路径和45°比例加载路径情形相比更加显著;该合金的多轴棘轮行为强烈依赖于加载路径的形状,并随施加的应力幅值与轴向平均应力的增大而变得更为显著;在不同的多轴加载路径下,铸造AZ91镁合金轴向和扭向的应力–应变曲线都是对称的外凸状,且轴向的棘轮行为最终会达到准棘轮安定状态。这些研究成果将为铸造镁合金的本构模型建立提供丰富的实验数据。
  • Research Article

    Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature

    + Author Affiliations
    • The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial–torsional cyclic tests controlled by stress with various loading paths at room temperature (RT). The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed. Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths; multiaxial ratchetting presents strong path dependence, and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional 45° linear loading paths; multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase. Moreover, stress–strain curves show a convex and symmetrical shape in axial/torsional directions. Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles. The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys.
    • loading
    • [1]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [2]
      D. Eliezer, E. Aghion, and F.H. Froes, Magnesium science, technology and applications, Adv. Perform. Mater., 5(1998), No. 3, p. 201. doi: 10.1023/A:1008682415141
      [3]
      J.P. Weiler, A review of magnesium die-castings for closure applications, J. Magnes. Alloys, 7(2019), No. 2, p. 297. doi: 10.1016/j.jma.2019.02.005
      [4]
      C.X. Zhang, J.J. Lin, and H.N. Liu, Magnesium-based biodegradable materials for biomedical applications, MRS Adv., 3(2018), No. 40, p. 2359. doi: 10.1557/adv.2018.488
      [5]
      B. Liu, J. Yang, X.Y. Zhang, Q. Yang, J.S. Zhang, and X.Q. Li, Development and application of magnesium alloy parts for automotive OEMs: A review, J. Magnes. Alloys, 11(2023), No. 1, p. 15. doi: 10.1016/j.jma.2022.12.015
      [6]
      R.E. Reed-Hill and W.D. Robertson, Deformation of magnesium single crystals by nonbasal slip, JOM, 9(1957), No. 4, p. 496. doi: 10.1007/BF03397907
      [7]
      J. Zhang and S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium, J. Mech. Phys. Solids, 60(2012), No. 5, p. 945. doi: 10.1016/j.jmps.2012.01.005
      [8]
      P.B. Hirsch and J.S. Lally, The deformation of magnesium single crystals, Philos. Mag., 12(1965), No. 117, p. 595. doi: 10.1080/14786436508218903
      [9]
      R.E. Mises, Mechanics of plastic shape change of crystals, Z. Angew. Math. Mech., 8(2006), No. 3, p. 161.
      [10]
      M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A, 12(1981), No. 3, p. 409. doi: 10.1007/BF02648537
      [11]
      J.B. Lin, W.J. Ren, X.Y. Wang, and L.F. Ma, Tension–compression asymmetry in yield strength and hardening behaviour of as-extruded AZ31 alloy, Mater. Sci. Technol., 32(2016), No. 18, p. 1855. doi: 10.1080/02670836.2016.1149293
      [12]
      C.L. Lv, T.M. Liu, D.J. Liu, S. Jiang, and W. Zeng, Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy, Mater. Des., 33(2012), p. 529. doi: 10.1016/j.matdes.2011.04.060
      [13]
      G.Z. Kang, C. Yu, Y.J. Liu, and G.F. Quan, Uniaxial ratchetting of extruded AZ31 magnesium alloy: Effect of mean stress, Mater. Sci. Eng. A, 607(2014), p. 318. doi: 10.1016/j.msea.2014.04.023
      [14]
      Y. Lei, H. Li, Y.J. Liu, Z.Y. Wang, and G.Z. Kang, Experimental study on uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium alloy with different plastic deformation mechanisms, J. Magnes. Alloys, 11(2023), No. 1, p. 379. doi: 10.1016/j.jma.2021.03.018
      [15]
      L. Wu, A. Jain, D.W. Brown, et al., Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A, Acta Mater., 56(2008), No. 4, p. 688. doi: 10.1016/j.actamat.2007.10.030
      [16]
      J.L. Wu, L. Jin, J. Dong, F.H. Wang, and S. Dong, The texture and its optimization in magnesium alloy, J. Mater. Sci. Technol., 42(2020), p. 175. doi: 10.1016/j.jmst.2019.10.010
      [17]
      Y. Lei, Z.Y. Wang, and G.Z. Kang, Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy, J. Magnes. Alloys, 11(2023), No. 9, p. 3255. doi: 10.1016/j.jma.2021.12.001
      [18]
      C.H. Cáceres, T. Sumitomo, and M. Veidt, Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading–unloading, Acta Mater., 51(2003), No. 20, p. 6211. doi: 10.1016/S1359-6454(03)00444-0
      [19]
      G.Z. Kang, Y.J. Liu, J. Ding, and Q. Gao, Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: Damage evolution and damage-coupled visco-plastic constitutive model, Int. J. Plast., 25(2009), No. 5, p. 838. doi: 10.1016/j.ijplas.2008.06.004
      [20]
      G.Z. Kang, Y.W. Dong, H. Wang, Y.J. Liu, and X.J. Cheng, Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5952. doi: 10.1016/j.msea.2010.06.020
      [21]
      G.Z. Kang, Q. Gao, L.X. Cai, and Y.F. Sun, Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures, Nucl. Eng. Des., 216(2002), No. 1-3, p. 13. doi: 10.1016/S0029-5493(02)00062-6
      [22]
      H.A. Patel, N. Rashidi, D.L. Chen, S.D. Bhole, and A.A. Luo, Cyclic deformation behavior of a super-vacuum die cast magnesium alloy, Mater. Sci. Eng. A, 546(2012), p. 72. doi: 10.1016/j.msea.2012.03.028
      [23]
      H. Zenner and F. Renner, Cyclic material behaviour of magnesium die castings and extrusions, Int. J. Fatigue, 24(2002), No. 12, p. 1255. doi: 10.1016/S0142-1123(02)00042-7
      [24]
      H.A. Patel, D.L. Chen, S.D. Bhole, and K. Sadayappan, Cyclic deformation and twinning in a semi-solid processed AZ91D magnesium alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 208. doi: 10.1016/j.msea.2010.09.016
      [25]
      Z.M. Li, A.A. Luo, Q.G. Wang, H. Zou, J.C. Dai, and L.M. Peng, Fatigue characteristics of sand-cast AZ91D magnesium alloy, J. Magnes. Alloys, 5(2017), No. 1, p. 1. doi: 10.1016/j.jma.2017.03.001
      [26]
      Z. Liu, H.T. Ji, L. Lin, L.J. Chen, W. Wu, and L. Yang, Cyclic deformation behaviour and potential automobile application of magnesium die casting alloys AZ91 and AM50, Mater. Sci. Forum, 539-543(2007), p. 1626. doi: 10.4028/www.scientific.net/MSF.539-543.1626
      [27]
      G.Z. Kang, Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application, Int. J. Fatigue, 30(2008), No. 8, p. 1448. doi: 10.1016/j.ijfatigue.2007.10.002
      [28]
      G.Z. Kang, Q.H. Kan, L.M. Qian, and Y.J. Liu, Ratchetting deformation of super-elastic and shape-memory NiTi alloys, Mech. Mater., 41(2009), No. 2, p. 139. doi: 10.1016/j.mechmat.2008.09.001
      [29]
      Y.C. Lin, X.M. Chen, and G. Chen, Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation, J. Alloys Compd., 509(2011), No. 24, p. 6838. doi: 10.1016/j.jallcom.2011.03.129
      [30]
      J.X. Zhang, Q. Yu, Y.Y. Jiang, and Q.Z. Li, An experimental study of cyclic deformation of extruded AZ61A magnesium alloy, Int. J. Plast., 27(2011), No. 5, p. 768. doi: 10.1016/j.ijplas.2010.09.004
      [31]
      S. Biswas, B. Beausir, L.S. Toth, and S. Suwas, Evolution of texture and microstructure during hot torsion of a magnesium alloy, Acta Mater., 61(2013), No. 14, p. 5263. doi: 10.1016/j.actamat.2013.05.018
      [32]
      X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23(2007), No. 1, p. 44. doi: 10.1016/j.ijplas.2006.03.005
      [33]
      F.H. Wang, M.L. Feng, Y.Y. Jiang, J. Dong, and Z.Y. Zhang, Cyclic shear deformation and fatigue of extruded Mg–Gd–Y magnesium alloy, J. Mater. Sci. Technol., 39(2020), p. 74. doi: 10.1016/j.jmst.2019.08.025
      [34]
      X.D. Zhang, K.C. Zhou, H.W. Wang, et al., On the cyclic torsion behavior of extruded AZ61A magnesium alloy tube, Int. J. Fatigue, 174(2023), art. No. 107704. doi: 10.1016/j.ijfatigue.2023.107704
      [35]
      J. Albinmousa, H. Jahed, and S. Lambert, Cyclic behaviour of wrought magnesium alloy under multiaxial load, Int. J. Fatigue, 33(2011), No. 8, p. 1127. doi: 10.1016/j.ijfatigue.2011.01.009
      [36]
      H. Jahed and J. Albinmousa, Multiaxial behaviour of wrought magnesium alloys–A review and suitability of energy-based fatigue life model, Theor. Appl. Fract. Mech., 73(2014), p. 97. doi: 10.1016/j.tafmec.2014.08.004
      [37]
      H. Li, G.Z. Kang, Y.J. Liu, and H. Jiang, Non-proportionally multiaxial cyclic deformation of AZ31 magnesium alloy: Experimental observations, Mater. Sci. Eng. A, 671(2016), p. 70. doi: 10.1016/j.msea.2016.06.043
      [38]
      A. Gryguć, S.B. Behravesh, H. Jahed, M. Wells, B. Williams, and X. Su, Multiaxial fatigue and cracking orientation of forged AZ80 magnesium alloy, Procedia Struct. Integr., 25(2020), p. 486. doi: 10.1016/j.prostr.2020.04.055
      [39]
      S. Begum, D. Chen, S. Xu, and A. Luo, Low cycle fatigue properties of an extruded AZ31 magnesium alloy, Int. J. Fatigue, 31(2009), No. 4, p. 726. doi: 10.1016/j.ijfatigue.2008.03.009
      [40]
      Y. Xiong, Q. Yu, and Y.Y. Jiang, Multiaxial fatigue of extruded AZ31B magnesium alloy, Mater. Sci. Eng. A, 546(2012), p. 119. doi: 10.1016/j.msea.2012.03.039
      [41]
      S. Bentachfine, G. Pluvinage, L.S. Toth, and Z. Azari, Biaxial low cycle fatigue under non-proportional loading of a magnesium–lithium alloy, Eng. Fract. Mech., 54(1996), No. 4, p. 513. doi: 10.1016/0013-7944(95)00223-5
      [42]
      N.T. Nguyen, O.S. Seo, C.A. Lee, M.G. Lee, J.H. Kim, and H.Y. Kim, Mechanical behavior of AZ31B Mg alloy sheets under monotonic and cyclic loadings at room and moderately elevated temperatures, Materials, 7(2014), No. 2, p. 1271. doi: 10.3390/ma7021271
      [43]
      H. Li, G.Z. Kang, C. Yu, and Y.J. Liu, Experimental investigation on temperature-dependent uniaxial ratchetting of AZ31B magnesium alloy, Int. J. Fatigue, 120(2019), p. 33. doi: 10.1016/j.ijfatigue.2018.10.020

    Catalog


    • /

      返回文章
      返回