Cite this article as: |
Zejun Wang, Qing Shi, Guofan Zhang, Yuxuan Zhu, and Binbin Li, Effect of pyrite content on chalcopyrite flotation under different regrinding conditions, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 49-57. https://doi.org/10.1007/s12613-024-2828-5 |
石晴 E-mail: shiqok@csu.edu.cn
[1] |
R.G. Acres, S.L. Harmer, and D.A. Beattie, Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite, Miner. Eng., 23(2010), No. 11-13, p. 928. doi: 10.1016/j.mineng.2010.03.007
|
[2] |
A.P. Chandra and A.R. Gerson, The mechanisms of pyrite oxidation and leaching: A fundamental perspective, Surf. Sci. Rep., 65(2010), No. 9, p. 293. doi: 10.1016/j.surfrep.2010.08.003
|
[3] |
M. Khosravi, E.H. Christiansen, and M.A. Rajabzadeh, Chemistry of rock-forming silicate and sulfide minerals in the granitoids and volcanic rocks of the Zefreh porphyry Cu–Mo deposit, central Iran: Implications for crystallization, alteration, and mineralization potential, Ore Geol. Rev., 134(2021), art. No. 104150. doi: 10.1016/j.oregeorev.2021.104150
|
[4] |
T. Ndikubwimana, J.Y. Chang, Z.Y. Xiao, et al., Flotation: A promising microalgae harvesting and dewatering technology for biofuels production, Biotechnol. J., 11(2016), No. 3, p. 315. doi: 10.1002/biot.201500175
|
[5] |
W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
|
[6] |
T.N. Aleksandrova, A.V. Orlova, and V.A. Taranov, Current status of copper-ore processing: A review, Russ. J. Non-Ferrous Met., 62(2021), p. 375. doi: 10.3103/S1067821221040027
|
[7] |
S.M. Bulatovic, D.M. Wyslouzil, and C. Kant, Operating practices in the beneficiation of major porphyry copper/molybdenum plants from Chile: Innovated technology and opportunities, a review, Miner. Eng., 11(1998), No. 4, p. 313. doi: 10.1016/S0892-6875(98)00011-9
|
[8] |
W.J. Bruckard, G.J. Sparrow, and J.T Woodcock, A review of the effects of the grinding environment on the flotation of copper sulphides, Int. J. Miner. Process., 100(2011), No. 1-2, p. 1. doi: 10.1016/j.minpro.2011.04.001
|
[9] |
A. Bakalarz, An analysis of copper concentrate from a Kupferschiefer-type ore from Legnica-Glogow Copper Basin (SW Poland), Miner. Process. Extr. Metall. Rev., 42(2021), No. 8, p. 552. doi: 10.1080/08827508.2021.1971663
|
[10] |
V. Rajagopal and I. Iwasaki, The properties and performance of cast iron grinding media, Miner. Process. Extr. Metall. Rev., 11(1992), No. 1-2, p. 75.
|
[11] |
P. Nowak, E. Krauss, and A. Pomianowski, The electrochemical characteristics of the galvanic corrosion of sulphide minerals in short-circuited model galvanic cells, Hydrometallurgy, 12(1984), No. 1, p. 95. doi: 10.1016/0304-386X(84)90050-1
|
[12] |
R.L.J. Lee, X.M Chen, and Y.J. Peng, Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion, Miner. Eng., 177(2022), art. No. 107387. doi: 10.1016/j.mineng.2021.107387
|
[13] |
W.Q. Qin, X.J. Wang, L.Y. Ma, F. Jiao, R.Z. Liu, and K. Gao, Effects of galvanic interaction between galena and pyrite on their flotation in the presence of butyl xanthate, Trans. Nonferrous Met. Soc. China, 25(2015), No. 9, p. 3111. doi: 10.1016/S1003-6326(15)63940-1
|
[14] |
A. Bahrami, M. Mirmohammadi, Y. Ghorbani, F. Kazemi, M. Abdollahi, and A. Danesh, Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 430. doi: 10.1007/s12613-019-1733-9
|
[15] |
H. Miki, T. Hirajima, K. Oka, and K. Sasaki, The development of fine microgram powder electrode system and its application in the analysis of chalcopyrite leaching behavior, Minerals, 6(2016), No. 4, p. 103. doi: 10.3390/min6040103
|
[16] |
M. Sauber and D.G. Dixon, Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes, Hydrometallurgy, 110(2011), No. 1-4, p. 1.
|
[17] |
Y.J. Peng, S. Grano, D. Fornasiero, and J. Ralston, Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite, Int. J. Miner. Process., 69 (2003), No. 1-4, p. 87. doi: 10.1016/S0301-7516(02)00119-9
|
[18] |
Y.F Mu and Y.J Peng, The effect of saline water on copper activation of pyrite in chalcopyrite flotation, Miner. Eng., 131(2019), p. 336. doi: 10.1016/j.mineng.2018.11.032
|
[19] |
V. Torres, R. Mayen-Mondragon, and J. Genesca, Assessment of the galvanic corrosion of bi-metallic couple 7075-T6-aluminum alloy/microalloyed dual-phase steel, Mater. Corros., 73(2022), No. 6, p. 940. doi: 10.1002/maco.202112934
|
[20] |
C.M.V.B. Almeida and B.F. Giannetti, The electrochemical behavior of pyrite–pyrrhotite mixtures, J. Electroanal. Chem., 553(2003), p. 27. doi: 10.1016/S0022-0728(03)00254-7
|
[21] |
D. Kocabag and T. Guler, A comparative evaluation of the response of platinum and mineral electrodes in sulfide mineral pulps, Int. J. Miner. Process., 87(2008), No. 1-2, p. 51. doi: 10.1016/j.minpro.2008.01.005
|
[22] |
P. Tomcik, C.E. Banks, T.J. Davies, and R.G. Compton, A self-catalytic carbon paste electrode for the detection of vitamin B12, Anal. Chem., 76(2004), No. 1, p. 161. doi: 10.1021/ac030308j
|
[23] |
R.J. Does, G.M. Janssen, M.P. Janssen, and F.M. Wuts, Statistical methods used in the marathon study, Int. J. Sports Med, Suppl 3(1989), p. S124. doi: 10.1055/s-2007-1024959
|
[24] |
G. Huang and S. Grano, Galvanic interaction of grinding media with pyrite and its effect on floatation, Miner. Eng., 18(2005), No. 12, p. 1152. doi: 10.1016/j.mineng.2005.06.005
|
[25] |
Y.J. Peng and S. Grano, Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides, Electrochim. Acta, 55(2010), No. 19, p. 5470. doi: 10.1016/j.electacta.2010.04.097
|
[26] |
Z. Ekmekçi and H. Demirel, Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite, Int. J. Miner. Process., 52(1997), No. 1, p. 31. doi: 10.1016/S0301-7516(97)00050-1
|
[27] |
S.H. Xu, M. Zanin, W. Skinner, and S. Brito e Abreu, Surface chemistry of oxidised pyrite during grinding: EDTA extraction analysis, Miner. Eng., 160(2021), art. No. 1066683.
|
[28] |
M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257(2011), No. 7, p. 2717. doi: 10.1016/j.apsusc.2010.10.051
|
[29] |
A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal., 36(2004), No. 12, p. 1564. doi: 10.1002/sia.1984
|
[30] |
X.L Zhang, Y.H Qin, Y.X Han, et al., A potential ceramic ball grinding medium for optimizing flotation separation of chalcopyrite and pyrite, Powder Technol., 392(2021), p. 167. doi: 10.1016/j.powtec.2021.07.006
|
[31] |
J.Y Wang and H.B. Zeng, Recent advances in electrochemical techniques for characterizing surface properties of minerals, Adv. Colloid Interface Sci., 288(2021), art No. 102346.
|
[32] |
C.H. Sun, Y. Tan, K. He, S.H. Zhang, K.X. Liang, and Q. Lu, Galvanic corrosion behaviors of A508-III/304L couples in boric acid solution, Int. J. Electrochem. Sci., 15(2020), No.4, p. 3298. doi: 10.20964/2020.04.40
|
[33] |
Y. Gan, Y. Li, and H.C. Lin, Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl, Corros. Sci., 43(2001), No. 3, p. 397. doi: 10.1016/S0010-938X(00)00090-1
|