留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  406
  • HTML全文浏览量:  187
  • PDF下载量:  22
  • 被引次数: 0
Zejun Wang, Qing Shi, Guofan Zhang, Yuxuan Zhu,  and Binbin Li, Effect of pyrite content on chalcopyrite flotation under different regrinding conditions, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2828-5
Cite this article as:
Zejun Wang, Qing Shi, Guofan Zhang, Yuxuan Zhu,  and Binbin Li, Effect of pyrite content on chalcopyrite flotation under different regrinding conditions, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2828-5
引用本文 PDF XML SpringerLink
研究论文

不同黄铁矿含量条件下再磨介质对黄铜矿浮选回收的影响


  • 通讯作者:

    石晴    E-mail: shiqok@csu.edu.cn

文章亮点

  • (1) 研究了不同再磨介质对不同品位铜精矿浮选影响规律
  • (2) 研究了使用不同研磨介质对再磨过程中电偶腐蚀的影响机理
  • (3) 描述了粗精矿铜品位可作为再磨浮选分离过程中选择介质的参考依据
  • 粗精矿再磨再选是斑岩型铜矿常用的选矿工艺流程,研究表明,通过再磨可以促进矿物的充分解离,实现铜硫矿物的浮选分离,提高铜精矿品位。然而,不同品位的粗精矿再磨后浮选精矿品位提升幅度不同,低品位粗精矿的提升幅度大,而高品位粗精矿的提升幅度小。为研究这一现象,本文选取不同品位的粗精矿,使用不同的再磨介质(铸铁球、陶瓷球、二元等质量混合介质),研究其再磨后对铜回收效果的影响。采用扫描电子显微镜、乙二胺四乙酸二钠盐提取法、X射线光电子能谱和电化学测量等实验研究了黄铜矿、黄铁矿与不同再磨介质之间的电偶腐蚀及与浮选性能之间的关系。研究表明,随着黄铁矿的加入,黄铜矿与黄铁矿之间的电偶腐蚀电流增大,且在使用铁介质时该电流变得更强,根据粗精矿中黄铁矿含量选择再磨介质以控制电偶腐蚀强弱,当黄铁矿含量较高时,使用铁介质再磨促进了电偶腐蚀,增加了黄铁矿表面亲水性FeOOH的生成。而在黄铁矿含量较低时,使用陶瓷介质避免电偶腐蚀加剧,可防止过量的FeOOH覆盖在黄铜矿表面,从而优化浮选效果。
  • Research Article

    Effect of pyrite content on chalcopyrite flotation under different regrinding conditions

    + Author Affiliations
    • This study aimed to investigate the effect of varying pyrite (Py) content on copper (Cu) in the presence of different regrinding conditions, which were altered using different types of grinding media: iron, ceramic balls, and their mixture, followed by flotation in the cleaner stage. The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content. Scanning electron microscopy, X-ray spectrometry, ethylenediaminetetraacetic acid disodium salt extraction, and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high, the use of iron media in regrinding promoted the generation of hydrophilic FeOOH on the surface of Py and improved the Cu grade. The ceramic medium with a low Py content prevented excessive FeOOH from covering the surface of chalcopyrite (Cpy). Electrochemical studies further showed that the galvanic corrosion current of Cpy–Py increased with the addition of Py and became stronger with the participation of iron media.
    • loading
    • [1]
      R.G. Acres, S.L. Harmer, and D.A. Beattie, Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite, Miner. Eng., 23(2010), No. 11-13, p. 928. doi: 10.1016/j.mineng.2010.03.007
      [2]
      A.P. Chandra and A.R. Gerson, The mechanisms of pyrite oxidation and leaching: A fundamental perspective, Surf. Sci. Rep., 65(2010), No. 9, p. 293. doi: 10.1016/j.surfrep.2010.08.003
      [3]
      M. Khosravi, E.H. Christiansen, and M.A. Rajabzadeh, Chemistry of rock-forming silicate and sulfide minerals in the granitoids and volcanic rocks of the Zefreh porphyry Cu–Mo deposit, central Iran: Implications for crystallization, alteration, and mineralization potential, Ore Geol. Rev., 134(2021), art. No. 104150. doi: 10.1016/j.oregeorev.2021.104150
      [4]
      T. Ndikubwimana, J.Y. Chang, Z.Y. Xiao, et al., Flotation: A promising microalgae harvesting and dewatering technology for biofuels production, Biotechnol. J., 11(2016), No. 3, p. 315. doi: 10.1002/biot.201500175
      [5]
      W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
      [6]
      T.N. Aleksandrova, A.V. Orlova, and V.A. Taranov, Current status of copper-ore processing: A review, Russ. J. Non-Ferrous Met., 62(2021), p. 375. doi: 10.3103/S1067821221040027
      [7]
      S.M. Bulatovic, D.M. Wyslouzil, and C. Kant, Operating practices in the beneficiation of major porphyry copper/molybdenum plants from Chile: Innovated technology and opportunities, a review, Miner. Eng., 11(1998), No. 4, p. 313. doi: 10.1016/S0892-6875(98)00011-9
      [8]
      W.J. Bruckard, G.J. Sparrow, and J.T Woodcock, A review of the effects of the grinding environment on the flotation of copper sulphides, Int. J. Miner. Process., 100(2011), No. 1-2, p. 1. doi: 10.1016/j.minpro.2011.04.001
      [9]
      A. Bakalarz, An analysis of copper concentrate from a Kupferschiefer-type ore from Legnica-Glogow Copper Basin (SW Poland), Miner. Process. Extr. Metall. Rev., 42(2021), No. 8, p. 552. doi: 10.1080/08827508.2021.1971663
      [10]
      V. Rajagopal and I. Iwasaki, The properties and performance of cast iron grinding media, Miner. Process. Extr. Metall. Rev., 11(1992), No. 1-2, p. 75.
      [11]
      P. Nowak, E. Krauss, and A. Pomianowski, The electrochemical characteristics of the galvanic corrosion of sulphide minerals in short-circuited model galvanic cells, Hydrometallurgy, 12(1984), No. 1, p. 95. doi: 10.1016/0304-386X(84)90050-1
      [12]
      R.L.J. Lee, X.M Chen, and Y.J. Peng, Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion, Miner. Eng., 177(2022), art. No. 107387. doi: 10.1016/j.mineng.2021.107387
      [13]
      W.Q. Qin, X.J. Wang, L.Y. Ma, F. Jiao, R.Z. Liu, and K. Gao, Effects of galvanic interaction between galena and pyrite on their flotation in the presence of butyl xanthate, Trans. Nonferrous Met. Soc. China, 25(2015), No. 9, p. 3111. doi: 10.1016/S1003-6326(15)63940-1
      [14]
      A. Bahrami, M. Mirmohammadi, Y. Ghorbani, F. Kazemi, M. Abdollahi, and A. Danesh, Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 430. doi: 10.1007/s12613-019-1733-9
      [15]
      H. Miki, T. Hirajima, K. Oka, and K. Sasaki, The development of fine microgram powder electrode system and its application in the analysis of chalcopyrite leaching behavior, Minerals, 6(2016), No. 4, p. 103. doi: 10.3390/min6040103
      [16]
      M. Sauber and D.G. Dixon, Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes, Hydrometallurgy, 110(2011), No. 1-4, p. 1.
      [17]
      Y.J. Peng, S. Grano, D. Fornasiero, and J. Ralston, Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite, Int. J. Miner. Process., 69 (2003), No. 1-4, p. 87. doi: 10.1016/S0301-7516(02)00119-9
      [18]
      Y.F Mu and Y.J Peng, The effect of saline water on copper activation of pyrite in chalcopyrite flotation, Miner. Eng., 131(2019), p. 336. doi: 10.1016/j.mineng.2018.11.032
      [19]
      V. Torres, R. Mayen-Mondragon, and J. Genesca, Assessment of the galvanic corrosion of bi-metallic couple 7075-T6-aluminum alloy/microalloyed dual-phase steel, Mater. Corros., 73(2022), No. 6, p. 940. doi: 10.1002/maco.202112934
      [20]
      C.M.V.B. Almeida and B.F. Giannetti, The electrochemical behavior of pyrite–pyrrhotite mixtures, J. Electroanal. Chem., 553(2003), p. 27. doi: 10.1016/S0022-0728(03)00254-7
      [21]
      D. Kocabag and T. Guler, A comparative evaluation of the response of platinum and mineral electrodes in sulfide mineral pulps, Int. J. Miner. Process., 87(2008), No. 1-2, p. 51. doi: 10.1016/j.minpro.2008.01.005
      [22]
      P. Tomcik, C.E. Banks, T.J. Davies, and R.G. Compton, A self-catalytic carbon paste electrode for the detection of vitamin B12, Anal. Chem., 76(2004), No. 1, p. 161. doi: 10.1021/ac030308j
      [23]
      R.J. Does, G.M. Janssen, M.P. Janssen, and F.M. Wuts, Statistical methods used in the marathon study, Int. J. Sports Med, Suppl 3(1989), p. S124. doi: 10.1055/s-2007-1024959
      [24]
      G. Huang and S. Grano, Galvanic interaction of grinding media with pyrite and its effect on floatation, Miner. Eng., 18(2005), No. 12, p. 1152. doi: 10.1016/j.mineng.2005.06.005
      [25]
      Y.J. Peng and S. Grano, Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides, Electrochim. Acta, 55(2010), No. 19, p. 5470. doi: 10.1016/j.electacta.2010.04.097
      [26]
      Z. Ekmekçi and H. Demirel, Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite, Int. J. Miner. Process., 52(1997), No. 1, p. 31. doi: 10.1016/S0301-7516(97)00050-1
      [27]
      S.H. Xu, M. Zanin, W. Skinner, and S. Brito e Abreu, Surface chemistry of oxidised pyrite during grinding: EDTA extraction analysis, Miner. Eng., 160(2021), art. No. 1066683.
      [28]
      M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257(2011), No. 7, p. 2717. doi: 10.1016/j.apsusc.2010.10.051
      [29]
      A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal., 36(2004), No. 12, p. 1564. doi: 10.1002/sia.1984
      [30]
      X.L Zhang, Y.H Qin, Y.X Han, et al., A potential ceramic ball grinding medium for optimizing flotation separation of chalcopyrite and pyrite, Powder Technol., 392(2021), p. 167. doi: 10.1016/j.powtec.2021.07.006
      [31]
      J.Y Wang and H.B. Zeng, Recent advances in electrochemical techniques for characterizing surface properties of minerals, Adv. Colloid Interface Sci., 288(2021), art No. 102346.
      [32]
      C.H. Sun, Y. Tan, K. He, S.H. Zhang, K.X. Liang, and Q. Lu, Galvanic corrosion behaviors of A508-III/304L couples in boric acid solution, Int. J. Electrochem. Sci., 15(2020), No.4, p. 3298. doi: 10.20964/2020.04.40
      [33]
      Y. Gan, Y. Li, and H.C. Lin, Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl, Corros. Sci., 43(2001), No. 3, p. 397. doi: 10.1016/S0010-938X(00)00090-1

    Catalog


    • /

      返回文章
      返回