留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(19)

数据统计

分享

计量
  • 文章访问数:  339
  • HTML全文浏览量:  162
  • PDF下载量:  34
  • 被引次数: 0
Renshu Yang, Jinjing Zuo, Liwei Ma, Yong Zhao, Zhen Liu,  and Quanmin Xie, Analysis of explosion wave interactions and rock breaking effects during dual initiation, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1788-1798. https://doi.org/10.1007/s12613-024-2830-y
Cite this article as:
Renshu Yang, Jinjing Zuo, Liwei Ma, Yong Zhao, Zhen Liu,  and Quanmin Xie, Analysis of explosion wave interactions and rock breaking effects during dual initiation, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1788-1798. https://doi.org/10.1007/s12613-024-2830-y
引用本文 PDF XML SpringerLink
研究论文

炮孔内两端起爆爆炸波动场与破岩效果分析


  • 通讯作者:

    左进京    E-mail: cumtbzjj@163.com

文章亮点

  • (1) 建立了双向扩展爆炸冲击波碰撞实验模型,获得了全时域爆炸冲击波与爆生气体演化特征。
  • (2) 构建了冲击波碰撞叠加与炮孔壁作用力学模型,揭示了碰撞叠加区域炮孔壁受力特性。
  • (3) 阐明了叠加区域介质大尺度径向裂纹形成机制,明晰了炮孔各区段介质损伤扩展行为。
  • 爆破工程中起爆点的位置和数量在一定程度上决定了爆炸应力波的传播方向和爆破效果。本文建立了相向两列爆炸冲击波碰撞模型,得到碰撞面上的冲击波强度大于两列冲击波的强度之和,在碰撞处,随着波阵面粒子速度的减小,动能转化为势能,波阵面压力升高,破岩能力提高。分析了碰撞过程中爆炸冲击波与爆生气体的演化特征,叠加区域冲击波扩展形态为哑铃型,碰撞区域的冲击波速度大于径向冲击波速度。据此建立了叠加区域炮孔壁受力模型,拟合了叠加区域孔壁应力与爆炸冲击波传播夹角的关系,发现孔壁的叠加应力约为单列爆炸冲击波入射应力的1.73倍。模型试验与数值模拟结果表明,在叠加区域炮孔壁上形成大尺度径向断裂裂纹,且呈现由宽变窄的路径变化,强冲击导致的大尺度径向裂纹宽度约为炮孔长度5%。根据孔壁受压特征,将炮孔壁分为未叠加区、弱叠加区、强叠加区,强叠加区域的峰值压力均值为弱叠加区域的1.48倍,为未叠加区域的1.84倍。
  • Research Article

    Analysis of explosion wave interactions and rock breaking effects during dual initiation

    + Author Affiliations
    • In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction of the explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shock wave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shock wave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collision location, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wave front pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collision area is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°. Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted. Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the single-explosion wave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks were generated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracture cracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wall compression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposed and nonsuperimposed areas, respectively.
    • loading
    • [1]
      Z.D. Leng, J.S. Sun, W.B. Lu, et al., Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation, Comput. Geotech., 129(2021), art. No. 103873. doi: 10.1016/j.compgeo.2020.103873
      [2]
      L.B. Jayasinghe, H.Y. Zhou, A.T.C. Goh, Z.Y. Zhao, and Y.L. Gui, Pile response subjected to rock blasting induced ground vibration near soil-rock interface, Comput. Geotech., 82(2017), p. 1. doi: 10.1016/j.compgeo.2016.09.015
      [3]
      R.P. Dhakal and T.C. Pan, Response characteristics of structures subjected to blasting-induced ground motion, Int. J. Impact Eng., 28(2003), No. 8, p. 813. doi: 10.1016/S0734-743X(02)00157-4
      [4]
      C.Q. Wu, H. Hao, and Y. Lu, Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion, Eng. Struct., 27(2005), No. 3, p. 323. doi: 10.1016/j.engstruct.2004.10.004
      [5]
      Z.X. Zhang, D.F. Hou, and A. Aladejare, Empirical equations between characteristic impedance and mechanical properties of rocks, J. Rock Mech. Geotech. Eng., 12(2020), No. 5, p. 975. doi: 10.1016/j.jrmge.2020.05.006
      [6]
      Z.X. Zhang, Effect of double-primer placement on rock fracture and ore recovery, Int. J. Rock Mech. Min. Sci., 71(2014), p. 208. doi: 10.1016/j.ijrmms.2014.03.020
      [7]
      Q.B. Zhang, Z.X. Zhang, C.S. Wu, J.S. Yang, and Z.Y. Wang, Characteristics of vibration waves measured in concrete lining of excavated tunnel during blasting in adjacent tunnel, Coatings, 12(2022), No. 7, art. No. 954. doi: 10.3390/coatings12070954
      [8]
      Z.D. Leng, W.B. Lu, M. Chen, Y. Fan, P. Yan, and G.H. Wang, Explosion energy transmission under side initiation and its effect on rock fragmentation, Int. J. Rock Mech. Min. Sci., 86(2016), p. 245. doi: 10.1016/j.ijrmms.2016.04.016
      [9]
      Z.D. Leng, Y. Fan, W.B. Lu, Q.D. Gao, and J.R. Zhou, Explosion energy transmission and rock-breaking effect of in-hole dual initiation, Chin. J. Rock Mech. Eng., 38(2019), No. 12, p. 2451. doi: 10.13722/j.cnki.jrme.2019.0474
      [10]
      I.A. Onederra, J.K. Furtney, E. Sellers, and S. Iverson, Modelling blast induced damage from a fully coupled explosive charge, Int. J. Rock Mech. Min. Sci., 58(2013), p. 73. doi: 10.1016/j.ijrmms.2012.10.004
      [11]
      L. Liu, M. Chen, W.B. Lu, Y.G. Hu, and Z.D. Leng, Effect of the location of the detonation initiation point for bench blasting, Shock. Vib., 2015(2015), art. No. 907310.
      [12]
      Q.D. Gao, W.B. Lu, P. Yan, H.R. Hu, Z.W. Yang, and M. Chen, Effect of initiation location on distribution and utilization of explosion energy during rock blasting, Bull. Eng. Geol. Environ., 78(2019), No. 5, p. 3433. doi: 10.1007/s10064-018-1296-4
      [13]
      Q.D. Gao, W.B. Lu, Z.D. Leng, Z.W. Yang, Y.Z. Zhang, and H.R. Hu, Effect of initiation location within blasthole on blast vibration field and its mechanism, Shock. Vib., 2019(2019), art. No. 5386014.
      [14]
      Y.S. Miao, X.J. Li, H.H. Yan, X.H. Wang, and J.P. Sun, Experimental study of bilinear initiating system based on hard rock pile blasting, Shock. Vib., 2017(2017), art. No. 3638150.
      [15]
      Y.S. Miao, X.J. Li, H.H. Yan, X.H. Wang, and J.P. Sun. Research and application of a symmetric bilinear initiation system in rock blasting, Int. J. Rock Mech. Min. Sci., 102(2018), p. 52. doi: 10.1016/j.ijrmms.2018.01.017
      [16]
      H. Haeri, Experimental and numerical study on crack propagation in pre-cracked beam specimens under three-point bending, J. Cent. South Univ., 23(2016), No. 2, p. 430. doi: 10.1007/s11771-016-3088-y
      [17]
      J.J. Zuo, R.S. Yang, X.M. Ma, L.Y. Yang, and Y. Zhao, Explosion wave and explosion fracture characteristics of cylindrical charges, Int. J. Rock Mech. Min. Sci., 135(2020), art. No. 104501. doi: 10.1016/j.ijrmms.2020.104501
      [18]
      J.J. Zuo, R.S. Yang, M. Gong, and P. Xu. Explosion wave and crack field of an eccentric decoupled charge. Appl. Optics., 60(2021), No. 33, p. 10453. doi: 10.1364/AO.438530
      [19]
      R.S. Yang and J.J. Zuo, Experimental study on directional fracture blasting of cutting seam cartridge, Shock. Vib., 2019(2019), art. No. 1085921.
      [20]
      S.I. Gerasimov and N.A. Trepalov, Background oriented schlieren method as an optical method to study shock waves, Tech. Phys., 62(2017), No. 12, p. 1799. doi: 10.1134/S1063784217120088
      [21]
      J.J. Ding, J.H. Yang, Z.W. Ye, Z.D. Leng, C. Yao, and C.B. Zhou, Cut-blasting method selection and parameter optimization for rock masses under high in situ stress, Int. J. Geomech., 23(2023), No. 12, art. No. 04023211. doi: 10.1061/IJGNAI.GMENG-8802
      [22]
      S.C. Lin, Cylindrical shock waves produced by instantaneous energy release, J. Appl. Phys., 25(1954), No. 1, p. 54. doi: 10.1063/1.1721520
      [23]
      K. Wang, Z.Q. Shi, Y.J. Shi, Z.G. Zhao, and D. Zhang, Characteristics of electrical explosion of single wire in a vacuum and in the air, Acta Phys. Sin., 66(2017), No. 18, art. No. 185203. doi: 10.7498/aps.66.185203
      [24]
      K. Wang, Z.Q. Shi, Y.J. Shi, and Z.G. Zhao, Characteristics of the electrical explosion of fine metallic wires in vacuum, AIP Adv., 7(2017), No. 9, art. No. 095002.
      [25]
      L.C. Forde, W.G. Proud, S.M. Walley, P.D. Church, and I.G. Cullis. Ballistic impact studies of a borosilicate glass, Int. J. Impact. Eng., 37(2010), No. 5, p. 568. doi: 10.1016/j.ijimpeng.2009.10.005
      [26]
      M.R. Ayatollahi, A.R. Torabi, and M. Firoozabadi, Theoretical and experimental investigation of brittle fracture in V-notched PMMA specimens under compressive loading, Eng. Fract. Mech., 135(2015), p. 187. doi: 10.1016/j.engfracmech.2015.01.005
      [27]
      R. Zhang, R. Guo, and S.Y. Wang, Mixed mode fracture study of PMMA using digital gradient sensing method, Eng. Fract. Mech., 119(2014), No. 2, p. 164.
      [28]
      W. Xu, X.F. Yao, H.Y. Yeh, and G.C. Jin, Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology, Polym. Test., 24(2005), No. 7, p. 900.
      [29]
      Y.B. Wang, Z.J. Wen, G.Q. Liu, et al., Explosion propagation and characteristics of rock damage in decoupled charge blasting based on computed tomography scanning, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104540. doi: 10.1016/j.ijrmms.2020.104540
      [30]
      T.W. Dong, H.S. Liu, S.L. Jiang, et al., Simulation of free surface flow with a revolving moving boundary for screw extrusion using smoothed particle hydrodynamics, Comput. Model. Eng. Sci.., 95(2013), No. 5, p. 369.
      [31]
      Z.L. Wang, H.C. Wang, J.G. Wang, and N.C. Tian, Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks, Comput. Geotech., 135(2021), art. No. 104172. doi: 10.1016/j.compgeo.2021.104172

    Catalog


    • /

      返回文章
      返回