留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(16)  / 表(10)

数据统计

分享

计量
  • 文章访问数:  471
  • HTML全文浏览量:  189
  • PDF下载量:  46
  • 被引次数: 0
Aixiang Wu, Zhenqi Wang, Zhuen Ruan, Raimund Bürger, Shaoyong Wang,  and Yi Mo, Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 862-876. https://doi.org/10.1007/s12613-024-2832-9
Cite this article as:
Aixiang Wu, Zhenqi Wang, Zhuen Ruan, Raimund Bürger, Shaoyong Wang,  and Yi Mo, Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 862-876. https://doi.org/10.1007/s12613-024-2832-9
引用本文 PDF XML SpringerLink
究论文

压剪耦合作用下浓缩尾砂流变特性及浓度演化规律


  • 通讯作者:

    王珍岐    E-mail: 15101014530@163.com

    阮竹恩    E-mail: ustb_ruanzhuen@hotmail.com

文章亮点

  • (1) 研制了高压力下浓缩尾砂压剪耦合实验装置。
  • (2) 开展了0–30 kPa高压力下的浓缩尾砂脱水研究。
  • (3) 揭示了浓密床层在高压力和剪切作用下的脱水机理。
  • 膏体充填是金属矿绿色开采的关键技术,其中尾砂浓密是膏体充填的首要环节,流变学是尾砂浓密的理论基础。然而,因尾砂超细而出现絮凝困难和底流浓度不达标的情况。自主研发了一套高压力下的浓缩尾砂脱水实验装置,该实验装置最高可输出30 kPa的压力,与真实浓密机的底部压力相近,突破了传统室内浓密实验只能进行低压力范围下(<1 kPa)的浓缩尾砂流变特性和浓度演化规律的局限性,同时也解决了传统浓密床层压缩屈服应力表征困难的问题。该套实验装置可以开展单独剪切、单独压缩以及压剪耦合等不同工况下的浓缩尾砂流变特性和浓度的演化规律研究。利用上述实验装置,开展了单独剪切、单独压缩和压剪耦合作用下的浓缩尾砂的流变特性和浓度演化规律的测试,测试的最高压力达到27 kPa。研究结果表明,压剪耦合作用下的浓缩尾砂的剪切屈服应力随压缩屈服应力的增长而增加,而单独剪切作用下的剪屈服应力变化较小。在不同的浓密条件下,浓缩尾砂的剪切屈服应力从低到高的顺序是单独剪切、单独压缩和压剪耦合。在压剪耦合作用下,浓度首先随着压缩屈服应力的增长而迅速增加,然后缓慢增加,而在单独剪切作用下浓度变化不明显。在不同的浓密条件下,浓度从低到高的顺序是单独剪切、单独压缩和压剪耦合。因此,浓密机采用深锥高泥层压力和耙架剪切力的耦合结构可以大幅度提高浓密机浓密效率和效果。最后从絮团结构以及导水通道演化的角度对浓缩尾砂的脱水机理进行了分析。
  • Research Article

    Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear

    + Author Affiliations
    • Cemented paste backfill (CPB) is a key technology for green mining in metal mines, in which tailings thickening comprises the primary link of CPB technology. However, difficult flocculation and substandard concentrations of thickened tailings often occur. The rheological properties and concentration evolution in the thickened tailings remain unclear. Moreover, traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties. An experiment of flocculation condition optimization based on the Box–Behnken design (BBD) was performed in the study, and the two response values were investigated: concentration and the mean weighted chord length (MWCL) of flocs. Thus, optimal flocculation conditions were obtained. In addition, the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear, compression, and compression–shear coupling experimental conditions were tested and compared. The results show that the shear yield stress under compression and compression–shear coupling increases with the growth of compressive yield stress, while the shear yield stress increases slightly under shear. The order of shear yield stress from low to high under different thickening conditions is shear, compression, and compression–shear coupling. Under compression and compression–shear coupling, the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases, while concentration increases slightly under shear. The order of concentration from low to high under different thickening conditions is shear, compression, and compression–shear coupling. Finally, the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.
    • loading
    • [1]
      G. Calas, Mineral resources and sustainable development, Elements, 13(2017), No. 5, p. 301. doi: 10.2138/gselements.13.5.301
      [2]
      C.F. Li, A.J. Wang, X.J. Chen, Q.S. Chen, Y.F. Zhang, and Y. Li, Regional distribution and sustainable development strategy of mineral resources in China, Chin. Geogr. Sci., 23(2013), No. 4, p. 470. doi: 10.1007/s11769-013-0611-z
      [3]
      X.H. Chen, F.Y. Zhou, D.B. Hu, G.D. Yi, and W.Z. Cao, An improved evaluation method to assess the coordination between mineral resource exploitation, economic development, and environmental protection, Ecol. Indic., 138(2022), art. No. 108808. doi: 10.1016/j.ecolind.2022.108808
      [4]
      N. Amin, H.M. Song, M.S. Shabbir, M.U. Farrukh, and I. Haq, Moving towards a sustainable environment: Do disaggregated energy consumption, natural resources, financial development and economic globalization really matter?, Int. J. Sustainable Dev. World Ecol., 30(2023), No. 5, p. 515. doi: 10.1080/13504509.2023.2166142
      [5]
      O. Vidal, H.L. Boulzec, B. Andrieu, and F. Verzier, Modelling the demand and access of mineral resources in a changing world, Sustainability, 14(2022), No. 1, art. No. 11.
      [6]
      P. Yang, L. Liu, Y.L. Suo, et al., Basic characteristics of magnesium-coal slag solid waste backfill material: Part I. preliminary study on flow, mechanics, hydration and leaching characteristics, J. Environ. Manage., 329(2023), art. No. 117016. doi: 10.1016/j.jenvman.2022.117016
      [7]
      M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, J. Cleaner Prod., 84(2014), p. 411. doi: 10.1016/j.jclepro.2014.04.079
      [8]
      Y. Wang, Z.Q. Wang, A.X. Wu, et al., Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193. doi: 10.1007/s12613-022-2537-x
      [9]
      M.L. Wu, Y.C. Ye, N.Y. Hu, Q.H. Wang, and W.K. Tan, Scientometric analysis on the review research evolution of tailings dam failure disasters, Environ. Sci. Pollut. Res., 30(2023), No. 6, p. 13945.
      [10]
      D.D.F.D. Rio, B.K. Sovacool, A.M. Foley, et al., Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options, Renewable Sustainable Energy Rev., 155(2022), art. No. 111885. doi: 10.1016/j.rser.2021.111885
      [11]
      Y.K. Liu, Y.M. Wang, and Q.S. Chen, Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutants retention and CO2 abatement, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1480.
      [12]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [13]
      Z.Q. Wang, Y. Wang, L. Cui, C. Bi, and A.X. Wu, Insight into the isothermal multiphysics processes in cemented paste backfill: Effect of curing time and cement-to-tailings ratio, Constr. Build. Mater., 325(2022), art. No. 126739. doi: 10.1016/j.conbuildmat.2022.126739
      [14]
      S. Gao, W. Li, K.K. Yuan, and C.X. Rong, Properties and application of thixotropic cement paste backfill with molybdenum tailings, J. Cleaner Prod., 391(2023), art. No. 136169. doi: 10.1016/j.jclepro.2023.136169
      [15]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [16]
      S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Cleaner Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
      [17]
      C.C. Vargas and A.M. Pulido, Sustainable management of thickened tailings in Chile and Peru: A review of practical experience and socio-environmental acceptance, Sustainability, 14(2022), No. 17, art. No. 10901. doi: 10.3390/su141710901
      [18]
      H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
      [19]
      L.Y. Zhu, W.S. Lyu, P. Yang, and Z.K. Wang, Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings, Ultrason. Sonochem., 66(2020), art. No. 104984. doi: 10.1016/j.ultsonch.2020.104984
      [20]
      A. Kuznetsova, P. Kuznetsov, J.M. Foght, and T. Siddique, Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage, Sci. Total Environ., 571(2016), p. 699. doi: 10.1016/j.scitotenv.2016.07.039
      [21]
      S. Azam, S. Jeeravipoolvarn, and J.D. Scott, Numerical modeling of tailings thickening for improved mine waste management, J. Environ. Inform., 13(2009), No. 2, p. 111. doi: 10.3808/jei.200900146
      [22]
      A.X. Wu, Z.E. Ruan, C.P. Li, S.Y. Wang, Y. Wang, and J.D. Wang, Numerical study of flocculation settling and thickening of whole-tailings in deep cone thickener using CFD approach, J. Cent. South Univ., 26(2019), No. 3, p. 711. doi: 10.1007/s11771-019-4041-7
      [23]
      Q.Y. Lu, B. Yan, L. Xie, J. Huang, Y. Liu, and H.B. Zeng, A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants, Sci. Total Environ., 565(2016), p. 369. doi: 10.1016/j.scitotenv.2016.04.192
      [24]
      V. Vajihinejad and J.B.P. Soares, Monitoring polymer flocculation in oil sands tailings: A population balance model approach, Chem. Eng. J., 346(2018), p. 447. doi: 10.1016/j.cej.2018.04.039
      [25]
      L.F. Zhang, H.J. Wang, A.X. Wu, K. Yang, X. Zhang, and J.B. Guo, Effect of flocculant dosage on the settling properties and underflow concentration of thickener for flocculated tailing suspensions, Water Sci. Technol., 88(2023), No. 1, p. 304. doi: 10.2166/wst.2023.191
      [26]
      H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
      [27]
      T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
      [28]
      C.C. Han, Y.Y. Tan, L.S. Chu, W.D. Song, and X. Yu, Flocculation and settlement characteristics of ultrafine tailings and microscopic characteristics of flocs, Minerals, 12(2022), No. 2, art. No. 221. doi: 10.3390/min12020221
      [29]
      W.B. Li, S.K. Cheng, L.B. Zhou, and Y.X. Han, Enhanced iron recovery from magnetic separation of ultrafine specularite through polymer-bridging flocculation: A study of flocculation performance and mechanism, Sep. Purif. Technol., 308(2023), art. No. 122882. doi: 10.1016/j.seppur.2022.122882
      [30]
      S. Li and X.M. Wang, Fly-ash-based magnetic coagulant for rapid sedimentation of electronegative slimes and ultrafine tailings, Powder Technol., 303(2016), p. 20. doi: 10.1016/j.powtec.2016.09.016
      [31]
      M.R. MacIver, M. Pawlik, and H. Hamza, Aggregate density changes during the compression of flocculated silica, Powder Technol., 350(2019), p. 43. doi: 10.1016/j.powtec.2019.03.017
      [32]
      H.Z. Jiao, Y.C. Wu, H. Wang, et al., Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
      [33]
      X.M. Chen, X.F. Jin, H.Z. Jiao, Y.X. Yang, and J.H. Liu, Pore connectivity and dewatering mechanism of tailings bed in raking deep-cone thickener process, Minerals, 10(2020), No. 4, art. No. 375. doi: 10.3390/min10040375
      [34]
      T.A. Prabhu and A. Singh, Rheology and microstructure of discontinuous shear thickening suspensions, J. Rheol., 66(2022), No. 4, p. 731. doi: 10.1122/8.0000317
      [35]
      J.L. Gao and A. Fourie, Using the flume test for yield stress measurement of thickened tailings, Miner. Eng., 81(2015), p. 116. doi: 10.1016/j.mineng.2015.07.013
      [36]
      Y. Wang, A.X. Wu, Z.E. Ruan, et al., Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1430. doi: 10.1007/s12613-020-2116-y
      [37]
      Z.E. Ruan, A.X. Wu, R. Bürger, et al., Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry, Powder Technol., 392(2021), p. 278. doi: 10.1016/j.powtec.2021.07.008
      [38]
      S.P. Usher and P.J. Scales, Steady state thickener modelling from the compressive yield stress and hindered settling function, Chem. Eng. J., 111(2005), No. 2-3, p. 253. doi: 10.1016/j.cej.2005.02.015
      [39]
      B.B. Zheng, J.H. Wang, D.M. Zhang, L. Zhao, and W.S. Wang, Laboratory experimental study of the evaporation and mechanical behaviour of deposited tailings, Environ. Sci. Pollut. Res., 28(2021), No. 47, p. 67565. doi: 10.1007/s11356-021-14951-x
      [40]
      J.G. Liu, S.Y. He, H. Zhao, G. Li, and M.Y. Wang, Experimental investigation on the dynamic behaviour of metal foam: From yield to densification, Int. J. Impact Eng., 114(2018), p. 69. doi: 10.1016/j.ijimpeng.2017.12.016
      [41]
      F. Concha, J.P. Segovia, S. Vergara, et al., Audit industrial thickeners with new on-line instrumentation, Powder Technol., 314(2017), p. 680. doi: 10.1016/j.powtec.2017.03.040
      [42]
      H.S. Coe and G.H. Clevenger, Methods for determining the capacity of slime settling tanks, Trans. AIME, 55(1916), p. 356.
      [43]
      G.J. Kynch, A theory of sedimentation, Trans. Faraday Soc., 48(1952), p. 166. doi: 10.1039/tf9524800166
      [44]
      P.T. Shannon, R.D. DeHaas, E.P. Stroupe, and E.M. Tory, Batch and continuous thickening. Prediction of batch settling behavior from initial rate data with results for rigid spheres, Ind. Eng. Chem. Fundamen, 3(1964), No. 3, p. 250. doi: 10.1021/i160011a014
      [45]
      E.M. Tory and P.T. Shannon, Reappraisal of concept of settling in compression. settling behavior and concentration profiles for initially concentrated calcium carbonate slurries, Ind. Eng. Chem. Fundamen, 4(1965), No. 2, p. 194. doi: 10.1021/i160014a017
      [46]
      J.W. Bian, H. Wang, C.C. Xiao, and D.M. Zhang, An experimental study on the flocculating settling of unclassified tailings, PLoS One, 13(2018), No. 9, art. No. e0204230. doi: 10.1371/journal.pone.0204230
      [47]
      M. Rudman, K. Simic, D.A. Paterson, P. Strode, A. Brent, and I.D. Šutalo, Raking in gravity thickeners, Int. J. Miner. Process., 86(2008), No. 1-4, p. 114. doi: 10.1016/j.minpro.2007.12.002
      [48]
      M. Rudman, D.A. Paterson, and K. Simic, Efficiency of raking in gravity thickeners, Int. J. Miner. Process., 95(2010), No. 1-4, p. 30. doi: 10.1016/j.minpro.2010.03.007
      [49]
      M.R. MacIver and M. Pawlik, A floc structure perspective on sediment consolidation in thickened tailings, Chem. Eng. Sci., 263(2022), art. No. 118095. doi: 10.1016/j.ces.2022.118095
      [50]
      M.J. Vold, Computer simulation of floc formation in a colloidal suspension, J. Colloid Sci., 18(1963), No. 7, p. 684. doi: 10.1016/0095-8522(63)90061-8
      [51]
      H.Z. Jiao, W.X. Zhang, Y.X. Yang, L.H. Yang, K.J. Hu, and J.X. Yu, Pore structure evolution and seepage characteristics in unclassified tailing thickening process, Minerals, 12(2022), No. 2, art. No. 164. doi: 10.3390/min12020164
      [52]
      H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538. doi: 10.1007/s12613-022-2587-0
      [53]
      B.L. Xiao, S.J. Miao, and Q. Gao, Quantifying particle size and size distribution of mine tailings through deep learning approach of autoencoders, Powder Technol., 397(2022), art. No. 117088. doi: 10.1016/j.powtec.2021.117088
      [54]
      A.X. Wu, Z.E. Ruan, R. Bürger, S.H. Yin, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
      [55]
      P. Ofori, A.V. Nguyen, B. Firth, C. McNally, and O. Ozdemir, Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings, Chem. Eng. J., 172(2011), No. 2-3, p. 914. doi: 10.1016/j.cej.2011.06.082
      [56]
      G.H. Chen, C.P. Li, Z.E. Ruan, R. Bürger, and H.Z. Hou, Research on floc structure and physical properties based on pipeline flocculation, J. Water Process Eng., 53(2023), art. No. 103627. doi: 10.1016/j.jwpe.2023.103627

    Catalog


    • /

      返回文章
      返回