留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(14)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  574
  • HTML全文浏览量:  209
  • PDF下载量:  34
  • 被引次数: 0
Xingping Lai, Huicong Xu, Pengfei Shan, Qinxin Hu, Weixi Ding, Shangtong Yang, and Zhongming Yan, Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 929-942. https://doi.org/10.1007/s12613-024-2833-8
Cite this article as:
Xingping Lai, Huicong Xu, Pengfei Shan, Qinxin Hu, Weixi Ding, Shangtong Yang, and Zhongming Yan, Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 929-942. https://doi.org/10.1007/s12613-024-2833-8
引用本文 PDF XML SpringerLink
研究论文

急倾斜采动煤岩联动诱冲机理研究


  • 通讯作者:

    许慧聪    E-mail: xhcxust@163.com

文章亮点

  • (1) 厘清了急倾斜工作面推进过程中采动煤岩动力破坏的“时–空”响应关系。
  • (2) 系统揭示了急倾斜采动煤岩“倾向–走向”致灾效应叠加的联动诱冲机理。
  • (3) 提出了急倾斜采动煤岩高能畸变区“内–外”协同改性调控技术。
  • 随着乌鲁木齐矿区急倾斜煤层的加速向深开采,采动煤岩结构畸变致诱冲击地压频发是进入深部后急倾斜煤层赋存矿井亟待解决的关键问题。本文从采动煤岩变形局部化角度出发,综合运用理论分析及数据挖掘等研究方法,构建了急倾斜采动夹持岩柱及煤层顶板的力学模型,得到了采深影响下急倾斜深部工作面重点致灾区域的力学响应行为;基于海量微震数据的空间相关性,厘清了急倾斜工作面推进过程中采动煤岩动力破坏的“时–空”响应关系。结果表明:(1) “夹持岩柱-B6顶板”这个特殊的煤岩赋存结构是乌东煤矿南采区冲击致灾的源头区域。两者随采深增加均出现不同程度的变形局部化现象。(2) +502水平处为夹持岩柱出现明显挤压撬动效应的临界水平,+509水平处是顶板极限破断的临界水平。岩柱与顶板的弯曲变形和能量蓄积态势均随采深增加呈非线性急速升高。深部急倾斜采动煤岩的变形局部化现象导致倾向撬压效应与走向撬压效应在空间上叠加,加剧了“夹持岩柱-B3+6煤层-B6顶板”这一“强–弱”特殊结构的能量差异化分布及应力非对称程度,导致工作面面临频发性动力灾害的威胁。(3) 提出的高能畸变区“内–外”协同改性调控技术有效缓解了采场围岩高应力集中及能量异化态势,调控后夹持岩柱及B6顶板区域平均视电阻率分别提高了430%及300%,有效保障了急倾斜煤层安全高效开发。
  • Research Article

    Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams

    + Author Affiliations
    • In recent years, the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased. Local deformation of mining coal-rock results in frequent rockbursts. This has become a critical issue that affects the safe mining of deep, steeply inclined coal seams. In this work, we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data. We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof, explaining the mechanical response behavior of key disaster-prone zones within the deep working face, affected by the dynamics of deep mining. By exploring the spatial correlation inherent in extensive microseismic data, we delineate the “time–space” response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face. The results disclose that (1) the distinctive coal-rock occurrence structure characterized by a “sandwiched rock pillar-B6 roof” constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine, with both elements presenting different degrees of deformation localization with increasing mining depth. (2) As mining depth increases, the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration. The localized deformation of deep, steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions, increasing the energy distribution disparity and stress asymmetry of the “sandwiched rock pillar-B3+6 coal seam-B6 roof” configuration. This makes worse the propensity for frequent dynamic disasters in the working face. (3) The developed high-energy distortion zone “inner–outer” control technology effectively reduces high stress concentration and energy distortion in the surrounding rock. After implementation, the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430% and 300%, respectively, thus guaranteeing the safe and efficient development of steeply inclined coal seams.
    • loading
    • [1]
      X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
      [2]
      H.C. Xu, X.P. Lai, P.F. Shan, et al., Energy dissimilation characteristics and shock mechanism of coal-rock mass induced in steeply-inclined mining: Comparison based on physical simulation and numerical calculation, Acta Geotech., 18(2023), No. 2, p. 843. doi: 10.1007/s11440-022-01617-2
      [3]
      Y.K. Ma, B.S. Nie, X.Q. He, X.C. Li, J.Q. Meng, and D.Z. Song, Mechanism investigation on coal and gas outburst: An overview, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 872. doi: 10.1007/s12613-019-1956-9
      [4]
      J.F. Zhang, F.X. Jiang, J.B. Yang, W.S. Bai, and L. Zhang, Rockburst mechanism in soft coal seam within deep coal mines, Int. J. Min. Sci. Technol., 27(2017), No. 3, p. 551. doi: 10.1016/j.ijmst.2017.03.011
      [5]
      Q.X. Qi, Y.Z. Li, S.K. Zhao, et al., Seventy years development of coal mine rockburst in China: Establishment and consideration of theory and technology system, Coal Sci. Technol., 47(2019), No. 9, p. 1.
      [6]
      X.G. Cheng, W. Qiao, L.M. Dou, et al. , In-situ stress field inversion and its impact on mining-induced seismicity, Geomat. Nat. Hazards Risk, 14(2023), No. 1, p. 176. doi: 10.1080/19475705.2022.2158377
      [7]
      L.M. Dou, Y.D. Jiang, A.Y. Cao, et al., Monitoring and pre-warning of rockburst hazard with technology of stress field and wave field in underground coalmines, Chin. J. Rock Mech. Eng., 36(2017), No. 4, p. 803.
      [8]
      Y.C. Wang, C.A. Tang, M. Cai, et al., Microseismicity evolution related to two extremely intense rockbursts in a water diversion tunnel, Int. J. Rock Mech. Min. Sci., 164(2023), art. No. 105359. doi: 10.1016/j.ijrmms.2023.105359
      [9]
      Y.S. Pan, Y.M. Song, C.L. Zhu, H. Ren, and H.L. Xu, Localization method of coal rock deformation for rock burst prediction, J. China Coal Soc., 48(2023), No. 1, p. 185.
      [10]
      H.W. Zhang, H. Rong, J.Q. Chen, et al., Risk assessment of rockburst based on geo-dynamic division method in suberect and extremely thick coal seam, J. China Coal Soc., 40(2015), No. 12, p. 2755.
      [11]
      H.W. Zhang, F. Zhu, J. Han, B.J. Huo, H. Rong, and G.S. Tang, Geological dynamic conditions and forecast technology for rock bursts, J. China Coal Soc., 41(2016), No. 3, p. 545.
      [12]
      S.Q. He, D.Z. Song, X.Q. He, et al., Coupled mechanism of compression and prying-induced rock burst in steeply inclined coal seams and principles for its prevention, Tunn. Undergr. Space Technol., 98(2020), art. No. 103327. doi: 10.1016/j.tust.2020.103327
      [13]
      S.Q. He, D.Z. Song, Z.L. Li, et al., Precursor of spatio-temporal evolution law of MS and AE activities for rock burst warning in steeply inclined and extremely thick coal seams under caving mining conditions, Rock Mech. Rock Eng., 52(2019), No. 7, p. 2415. doi: 10.1007/s00603-018-1690-z
      [14]
      X.P. Lai, H. Sun, P.F. Shan, M. Cai, J.T. Cao, and F. Cui, Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams, Int. J. Miner. Metall. Mater., 22(2015), No. 12, p. 1233. doi: 10.1007/s12613-015-1190-z
      [15]
      X.P. Lai, C. Jia, F. Cui, et al., Study on the evolution law of overburden energy of steeply inclined extra-thick coal seam influenced by mining depth, Chin. J. Rock Mech. Eng., 42(2023), No. 2, p. 261.
      [16]
      X.P. Lai, Y.R. Yang, P.F. Shan, Z.H. Lü, and N.B. Wang, Comprehensive analysis of disaster-causing characteristics of roof stress superimposed effect in steeply inclined coal seams, J. China Coal Soc., 43(2018), No. 1, p. 70.
      [17]
      X.P. Lai, Y.R. Yang, N.B. Wang, P.F. Shan, and D.S. Zhang, Comprehensive analysis to temporal-spatial variation of dynamic instability of steeply inclined coal-rock mass, Chin. J. Rock Mech. Eng., 37(2018), No. 3, p. 583.
      [18]
      F. Cui, C. Jia, X.P. Lai, J.Q. Chen, S.L. Zhang, and S.F. He, Study on advancing rate of steeply inclined extra-thick coal seam in rock burst mine based on loading-unloading response ratio, J. China Coal Soc., 47(2022), No. 2, p. 745.
      [19]
      X.P. Lai, J.J. Dai, and C. Li, Analysis on hazard characteristics of overburden structure in steeply inclined coal seam, J. China Coal Soc., 45(2020), No. 1, p. 122.
      [20]
      X.L. Li, D.Y. Chen, J.H. Fu, S.M. Liu, and X.S. Geng, Construction and application of fuzzy comprehensive evaluation model for rockburst based on microseismic monitoring, Appl. Sci., 13(2023), No. 21, art. No. 12013. doi: 10.3390/app132112013
      [21]
      W. Cai, L.M. Dou, G.Y. Si, and Y.W. Hu, Fault-induced coal burst mechanism under mining-induced static and dynamic stresses, Engineering, 7(2021), No. 5, p. 687. doi: 10.1016/j.eng.2020.03.017
      [22]
      Z.H. Wu, P.Z. Pan, S.K. Zhao, X.D. Liu, S.T. Miao, and Y.Z. Li, Mechanism of rock bursts caused by “Roof-Rock pillar” in mining steeply-inclined and its prevention and treatment, J. China Coal Soc., 46(2021), Suppl. 1, p. 49.
      [23]
      L.F. Xiong, Mechanisms and factors of the localized deformation in porous rocks, Chin. J. Rock Mech. Eng., 42(2023), No. 3, art. No. 780.
      [24]
      Z.B. Zhang, E.Y. Wang, H.T. Zhang, Z.M. Bai, Y.H. Zhang, and X. Chen, Research on nonlinear variation of elastic wave velocity dispersion characteristic in limestone dynamic fracture process, Fractals, 31(2023), No. 1, art. No. 2350008. doi: 10.1142/S0218348X23500081
      [25]
      P.A.P. Moran, Notes on continuous stochastic phenomena, Biometrika, 37(1950), No. 1-2, p. 17. doi: 10.1093/biomet/37.1-2.17
      [26]
      W. Cai, L.M. Dou, Y. Ju, W.Z. Cao, S.S. Yuan, and G.Y. Si, A plastic strain-based damage model for heterogeneous coal using cohesion and dilation angle, Int. J. Rock Mech. Min. Sci., 110(2018), p. 151. doi: 10.1016/j.ijrmms.2018.08.001
      [27]
      X.P. Lai, H.C. Xu, J.Q. Chen, et al., Research on energy dissimilation characteristics and control method of sandwiched rock pillar by steeply inclined mining, J. Min. Saf. Eng., 38(2021), No. 3, p. 429.
      [28]
      H.Z. Cai, M.H. Liu, J.J. Zhou, J.H. Li, and X.Y. Hu, Effective 3D-transient electromagnetic inversion using finite-element method with a parallel direct solver, Geophysics, 87(2022), No. 6, p. E377. doi: 10.1190/geo2021-0630.1
      [29]
      H.M. Liu, X.L. Li, Z.Y. Yu, et al., Influence of hole diameter on mechanical properties and stability of granite rock surrounding tunnels, Phys. Fluids, 35(2023), No. 6, art. No. 064121. doi: 10.1063/5.0154872

    Catalog


    • /

      返回文章
      返回