留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  600
  • HTML全文浏览量:  326
  • PDF下载量:  48
  • 被引次数: 0
Zhiliang Yang, Kang An, Yuchen Liu, Zhijian Guo, Siwu Shao, Jinlong Liu, Junjun Wei, Liangxian Chen, Lishu Wu,  and Chengming Li, Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2287-2299. https://doi.org/10.1007/s12613-024-2834-7
Cite this article as:
Zhiliang Yang, Kang An, Yuchen Liu, Zhijian Guo, Siwu Shao, Jinlong Liu, Junjun Wei, Liangxian Chen, Lishu Wu,  and Chengming Li, Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2287-2299. https://doi.org/10.1007/s12613-024-2834-7
引用本文 PDF XML SpringerLink
研究论文

微波等离子体化学气相沉积金刚石膜过程中的边缘效应:多物理场仿真和实验验证


    * 共同第一作者
  • 通讯作者:

    安康    E-mail: chengmli@mater.ustb.edu.cn

    吴立枢    E-mail: wulishu117@163.com

    李成明    E-mail: ank_diamond@163.com

文章亮点

  • (1) 增加衬底的凸起高度会导致边缘效应的增强。
  • (2) 边缘效应导致活性基团在衬底边缘富集。
  • (3) CH3和H在衬底边缘的富集是金刚石晶粒生长速率加快的原因。
  • (4) 金刚石生长速率的差异导致薄膜中应力类型的变化。
  • 金刚石膜在沉积过程的不均匀性严重限制了其后期的加工与应用,造成这种现象的原因之一就是所谓的“边缘效应”。本文旨在研究MPCVD沉积金刚石薄膜过程中的边缘效应。衬底凸起高度$ \Delta h $作为影响边缘效应的重要因素被用以进行等离子体模拟及指导金刚石薄膜沉积实验。使用有限元软件 COMSOL Multiphysics构建了基于电子碰撞反应的多物理场(电磁场、等离子体场和流体传热场)耦合模型。实验性生长通过使用拉曼光谱和扫描电子显微镜进行表征提供了模型验证。研究表明,模拟结果再现了实验趋势。$ \Delta h $($ \Delta h $ = 0–3 mm)的增大加剧了衬底边缘的等离子体放电,电子密度$ {n}_{\mathrm{e}} $、H摩尔浓度$ {C}_{\mathrm{H}} $、CH3摩尔浓度$ {C}_{{\mathrm{C}\mathrm{H}}_{3}} $在边缘处倍增(对于$ \Delta h $ = −1 mm的特殊下凹型样品,则表现为活性化学基团在衬底边缘处摩尔浓度的减小)。当$ \Delta h $ = 0–3 mm时,实验中在衬底边缘处得到了更高的金刚石生长速率与更大的金刚石晶粒尺寸,其随$ \Delta h $增大。薄膜厚度均匀性随$ \Delta h $而降低。所有样品的Raman光谱都显示了位于1332 cm−1附近的金刚石一阶特征峰。当$ \Delta h $ = −1 mm时,薄膜全部区域表现为拉应力。当$ \Delta h $ = 0–3 mm时,薄膜全部区域表现为压应力。
  • Research Article

    Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification

    + Author Affiliations
    • This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor deposition. Substrate bulge height $ \Delta h $ is a factor that affects the edge effect, and it was used to simulate plasma and guide the diamond-film deposition experiments. Finite-element software COMSOL Multiphysics was used to construct a multiphysics (electromagnetic, plasma, and fluid heat transfer fields) coupling model based on electron collision reaction. Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model. The simulation results reflected the experimental trends observed. Plasma discharge at the edge of the substrate accelerated due to the increase in $ \Delta h $ ($ \Delta h $ = 0–3 mm), and the values of electron density ($ {n}_{\mathrm{e}} $), molar concentration of H ($ {C}_{\mathrm{H}} $), and molar concentration of CH3 ($ {C}_{{\mathrm{C}\mathrm{H}}_{3}} $) doubled at the edge (for the special concave sample with $ \Delta h $ = −1 mm, the active chemical groups exhibited a decreased molar concentration at the edge of the substrate). At $ \Delta h $ = 0–3 mm, a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate, and their values increased with $ \Delta h $. The uniformity of film thickness decreased with $ \Delta h $. The Raman spectra of all samples revealed the first-order characteristic peak of diamond near 1332 cm−1. When $ \Delta h $ = −1 mm, tensile stress occurred in all regions of the film. When $ \Delta h $ = 1–3 mm, all areas in the film exhibited compressive stress.
    • loading
    • [1]
      V.A. Kukushkin, M.A. Lobaev, S.A. Bogdanov, et al., Visible and near-infrared photodetector on chemically vapor deposited diamond, Diam. Relat. Mater., 97(2019), art. No. 107444. doi: 10.1016/j.diamond.2019.107444
      [2]
      X.T. Ying, J.L. Luo, P.N. Wang, et al., Ultra-thin freestanding diamond window for soft X-ray optics, Diam. Relat. Mater., 12(2003), No. 3-7, p. 719. doi: 10.1016/S0925-9635(02)00340-0
      [3]
      X.L. Yuan, Y.T. Zheng, X.H. Zhu, et al., Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1195. doi: 10.1007/s12613-019-1843-4
      [4]
      J.L. Liu, L.X. Chen, Y.T. Zheng, J.J. Wang, Z.H. Feng, and C.M. Li, Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 850. doi: 10.1007/s12613-017-1469-3
      [5]
      Z. Liu, C.M. Li, L.X. Chen, L.M. Wang, L.F. Hei, and F.X. Lü, Deposition of crackless freestanding diamond films on Mo substrates with Zr interlayer, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 246. doi: 10.1007/s12613-010-0222-y
      [6]
      K. An, L.X. Chen, X.B. Yan, et al., Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films, Ceram. Int., 44(2018), No. 15, p. 17845. doi: 10.1016/j.ceramint.2018.06.253
      [7]
      K. An, L.X. Chen, X.B. Yan, et al., Fracture behavior of diamond films deposited by DC arc plasma jet CVD, Ceram. Int., 44(2018), No. 11, p. 13402. doi: 10.1016/j.ceramint.2018.04.178
      [8]
      Z.N. Qi, Y.T. Zheng, J.J. Wei, et al., Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement, Appl. Therm. Eng., 177(2020), art. No. 115489. doi: 10.1016/j.applthermaleng.2020.115489
      [9]
      P.P. Wang, G.Q. Chen, W.J. Li, et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
      [10]
      Y.Z. Guo, J.L. Liu, J.W. Liu, et al., Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 703. doi: 10.1007/s12613-019-1944-0
      [11]
      Y.F. Li, J.J. Su, Y.Q. Liu, M.H. Ding, G. Wang, and W.Z. Tang, A circumferential antenna ellipsoidal cavity type MPCVD reactor developed for diamond film deposition, Diam. Relat. Mater., 51(2015), p. 24. doi: 10.1016/j.diamond.2014.11.004
      [12]
      Q. Liang, C.S. Yan, J. Lai, et al., Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition, Cryst. Growth Des., 14(2014), No. 7, p. 3234. doi: 10.1021/cg500693d
      [13]
      B. Wang, J. Weng, Z.T. Wang, J.H. Wang, F. Liu, and L.W. Xiong, Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber, Vacuum, 182(2020), art. No. 109659. doi: 10.1016/j.vacuum.2020.109659
      [14]
      Y. Zhao, Y.Z. Guo, L.Z. Lin, et al., Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD, J. Cryst. Growth, 491(2018), p. 89. doi: 10.1016/j.jcrysgro.2018.03.046
      [15]
      M.Q. Ding, L.L. Li, and J.J. Feng, A study of high-quality freestanding diamond films grown by MPCVD, Appl. Surf. Sci., 258(2012), No. 16, p. 5987. doi: 10.1016/j.apsusc.2012.02.025
      [16]
      A.K. Mallik, K.S. Pal, N. Dandapat, B.K. Guha, S. Datta, and D. Basu, Influence of the microwave plasma CVD reactor parameters on substrate thermal management for growing large area diamond coatings inside a 915MHz and moderately low power unit, Diam. Relat. Mater., 30(2012), p. 53. doi: 10.1016/j.diamond.2012.10.001
      [17]
      H.Y. Tsai, C.J. Ting, and C.P. Chou, Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition, Diam. Relat. Mater., 16(2007), No. 2, p. 253. doi: 10.1016/j.diamond.2006.06.007
      [18]
      E.E. Ashkihazi, V.S. Sedov, D.N. Sovyk, et al., Plateholder design for deposition of uniform diamond coatings on WC–Co substrates by microwave plasma CVD for efficient turning application, Diam. Relat. Mater., 75(2017), p. 169. doi: 10.1016/j.diamond.2017.04.011
      [19]
      Y.C. Li, X.D. Liu, G.Y. Shu, et al., Thinning strategy of substrates for diamond growth with reduced PCD rim: Design and experiments, Diam. Relat. Mater., 101(2020), art. No. 107574. doi: 10.1016/j.diamond.2019.107574
      [20]
      S. Nad, Y.J. Gu, and J. Asmussen, Growth strategies for large and high quality single crystal diamond substrates, Diam. Relat. Mater., 60(2015), p. 26. doi: 10.1016/j.diamond.2015.09.018
      [21]
      S. Nad and J. Asmussen, Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD, Diam. Relat. Mater., 66(2016), p. 36. doi: 10.1016/j.diamond.2016.03.007
      [22]
      V. Sedov, A. Martyanov, A. Altakhov, et al., Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD, Coatings, 10(2020), No. 10, art. No. 939. doi: 10.3390/coatings10100939
      [23]
      L. Li, C.C. Zhao, S.L. Zhang, et al., Simulation of diamond synthesis by microwave plasma chemical vapor deposition with multiple substrates in a substrate holder, J. Cryst. Growth, 579(2022), art. No. 126457. doi: 10.1016/j.jcrysgro.2021.126457
      [24]
      M.Y. Feng, P. Jin, X.Q. Meng, P.F. Xu, J. Wu, and Z.G. Wang, One-step growth of a nearly 2 mm thick CVD single crystal diamond with an enlarged surface by optimizing the substrate holder structure, J. Cryst. Growth, 603(2023), art. No. 127011. doi: 10.1016/j.jcrysgro.2022.127011
      [25]
      H. Yamada, A. Chayahara, and Y. Mokuno, Simplified description of microwave plasma discharge for chemical vapor deposition of diamond, J. Appl. Phys., 101(2007), art. No. 063302. doi: 10.1063/1.2711811
      [26]
      J.J. Su, Y.F. Li, X.L. Li, et al., A novel microwave plasma reactor with a unique structure for chemical vapor deposition of diamond films, Diam. Relat. Mater., 42(2014), p. 28. doi: 10.1016/j.diamond.2013.12.001
      [27]
      M. Füner, C. Wild, and P. Koidl, Numerical simulations of microwave plasma reactors for diamond CVD, Surf. Coat. Technol., 74-75(1995), p. 221. doi: 10.1016/0257-8972(95)08232-8
      [28]
      The LXCat team, Itikawa Database, [2022-04-10]. www.lxcat.net
      [29]
      F. Silva, K. Hassouni, X. Bonnin, and A. Gicquel, Microwave engineering of plasma-assisted CVD reactors for diamond deposition, J. Phys. Condens. Matter, 21(2009), No. 36, art. No. 364202. doi: 10.1088/0953-8984/21/36/364202
      [30]
      S.J. Harris, Gas-phase kinetics during diamond growth: CH4 as-growth species, J. Appl. Phys., 65(1989), No. 8, p. 3044. doi: 10.1063/1.342696
      [31]
      M. Frenklach and H. Wang, Detailed surface and gas-phase chemical kinetics of diamond deposition, Phys. Rev. B, 43(1991), No. 2, p. 1520. doi: 10.1103/PhysRevB.43.1520
      [32]
      K. An, S. Zhang, S.W. Shao, et al., Effects of the electric field at the edge of a substrate to deposit a ϕ100 mm uniform diamond film in a 2.45 GHz MPCVD system, Plasma Sci. Technol., 24(2022), No. 4, art. No. 045502. doi: 10.1088/2058-6272/ac4deb
      [33]
      Y.Z. Zhang, S.W. Yu, J. Gao, et al., Design and simulation of a novel MPCVD reactor with three-cylinder cavity, Vacuum, 200(2022), art. No. 111055. doi: 10.1016/j.vacuum.2022.111055
      [34]
      X.S. Yan, L.M. Zhao, W.Y. Xu, L.W. Chen, H. Jia, and F.K. Liu, Design of an edge tapered 915 MHz/TM021 microwave plasma reactor by numerical analysis, AIP Adv., 11(2021), art. No. 035321. doi: 10.1063/6.0000846
      [35]
      J.A. Cuenca, S. Mandal, E.L.H. Thomas, and O.A. Williams, Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors, Diam. Relat. Mater., 124(2022), art. No. 108917. doi: 10.1016/j.diamond.2022.108917
      [36]
      W.K. Zhao, Y. Teng, K. Tang, et al., Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD, Chin. Phys. B, 31(2022), No. 11, art. No. 118102. doi: 10.1088/1674-1056/ac7298
      [37]
      K. Hassouni, F. Silva, and A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas, J. Phys. D, 43(2010), No. 15, art. No. 153001. doi: 10.1088/0022-3727/43/15/153001
      [38]
      H. Yamada, Numerical simulations to study growth of single-crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species, Jpn. J. Appl. Phys., 51(2012), No. 9R, art. No. 090105. doi: 10.1143/JJAP.51.090105
      [39]
      A.A. Emelyanov, V.A. Pinaev, M. Yu Plotnikov, A.K. Rebrov, N.I. Timoshenko, and I.B. Yudin, Effect of methane flow rate on gas-jet MPCVD diamond synthesis, J. Phys. D, 55(2022), No. 20, art. No. 205202. doi: 10.1088/1361-6463/ac526e
      [40]
      J. Weng, F. Liu, L.W. Xiong, J.H. Wang, and Q. Sun, Deposition of large area uniform diamond films by microwave plasma CVD, Vacuum, 147(2018), p. 134. doi: 10.1016/j.vacuum.2017.10.026
      [41]
      D.G. Goodwin, Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry, J. Appl. Phys., 74(1993), No. 11, p. 6888. doi: 10.1063/1.355063
      [42]
      S.J. Harris and D.G. Goodwin, Growth on the reconstructed diamond (100) surface, J. Phys. Chem., 97(1993), No. 1, p. 23. doi: 10.1021/j100103a007
      [43]
      H. Yamada, A. Chayahara, Y. Mokuno, and S. Shikata, Numerical microwave plasma discharge study for the growth of large single-crystal diamond, Diam. Relat. Mater., 54(2015), p. 9. doi: 10.1016/j.diamond.2014.11.005
      [44]
      R.H. Zhu, J.L. Liu, L.X. Chen, J. Wei, L.F. Hei, and C.M. Li, Research on 1420 cm−1 characteristic peak of free-standing diamond films in raman spectrum, J. Synth. Cryst., 44(2015), No. 4, p. 867.
      [45]
      K.S. Pal, A.K. Mallik, N. Dandapat, et al., Microscopic properties of MPCVD diamond coatings studied by micro-Raman and micro-photoluminescence spectroscopy, Bull. Mater. Sci., 38(2015), No. 2, p. 537. doi: 10.1007/s12034-015-0860-9

    Catalog


    • /

      返回文章
      返回