Cite this article as: |
Qian Cheng, Zerui Lei, Guangjun Mei, and Jianhua Chen, Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2645-2656. https://doi.org/10.1007/s12613-024-2835-6 |
梅光军 E-mail: meiguangjun@aliyun.com
[1] |
K.R. Seddon, A taste of the future, Nat. Mater., 2(2003), No. 6, p. 363. doi: 10.1038/nmat907
|
[2] |
S.A. Forsyth, J.M. Pringle, and D.R. MacFarlane, Ionic liquids—An overview, Aust. J. Chem., 57(2004), No. 2, art. No. 113. doi: 10.1071/CH03231
|
[3] |
Y.L. Wang, H.Y. He, C.L. Wang, et al., Insights into ionic liquids: From Z-bonds to quasi-liquids, JACS Au, 2(2022), No. 3, p. 543. doi: 10.1021/jacsau.1c00538
|
[4] |
B.A.D. Neto and J. Spencer, The impressive chemistry, applications and features of ionic liquids: Properties, catalysis & catalysts and trends, J. Braz. Chem. Soc., 23(2012), No. 6, p. 987. doi: 10.1590/S0103-50532012000600002
|
[5] |
Y. Liang, S.X. Bao, Y.M. Zhang, B. Chen, and C. Yu, Adsorption behavior of vanadium using supported 1-butyl-3-methylimidazolium chloride ionic liquid, Miner. Process. Extr. Metall. Rev., 45(2024), No. 3, p. 238. doi: 10.1080/08827508.2022.2141733
|
[6] |
B.Y. Liu and N.X. Jin, The applications of ionic liquid as functional material: A review, Curr. Org. Chem., 20(2016), No. 20, p. 2109. doi: 10.2174/1385272820666160527101844
|
[7] |
W.J. Qian, J. Texter, and F. Yan, Frontiers in poly(ionic liquid)s: Syntheses and applications, Chem. Soc. Rev., 46(2017), No. 4, p. 1124. doi: 10.1039/C6CS00620E
|
[8] |
P.C. Marr and A.C. Marr, Ionic liquid gel materials: Applications in green and sustainable chemistry, Green Chem., 18(2016), No. 1, p. 105. doi: 10.1039/C5GC02277K
|
[9] |
F.K. Chong, F.T. Eljack, M. Atilhan, D.C.Y. Foo and N.G. Chemmangattuvalappil, Ionic liquid design for enhanced carbon dioxide capture-A computer aided molecular design approach, Chem. Eng., 39(2014), No. 253.
|
[10] |
A.M. Vieira and A.E.C. Peres, The effect of amine type, pH, and size range in the flotation of quartz, Miner. Eng., 20(2007), No. 10, p. 1008. doi: 10.1016/j.mineng.2007.03.013
|
[11] |
A. Liu, J.C. Fan, and M.Q. Fan, Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (001) surface in the aqueous solution, Int. J. Miner. Process., 134(2015), p. 1. doi: 10.1016/j.minpro.2014.11.001
|
[12] |
V. Nunna, S.P. Suthers, M.I. Pownceby, and G.J. Sparrow, Beneficiation strategies for removal of silica and alumina from low-grade hematite–goethite iron ores, Miner. Process. Extr. Metall. Rev., 43(2022), No. 8, p. 1049. doi: 10.1080/08827508.2021.2003353
|
[13] |
D.S. He, K.X. Shang, W.M. Xie, F. Chen, M. Benzaazoua, and T.N. Aleksandrova, Study on the foam behavior of amine reagents adsorbed at gas–liquid and gas–liquid–solid interfaces, Physicochem. Probl. Miner. Process., 57(2020), No. 1, p. 192. doi: 10.37190/ppmp/130997
|
[14] |
S.B. Liu, Y.Y. Ge, J. Fang, J. Yu, and Q. Gao, An investigation of froth stability in reverse flotation of collophane, Miner. Eng., 155(2020), art. No. 106446. doi: 10.1016/j.mineng.2020.106446
|
[15] |
X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187. doi: 10.1016/j.seppur.2012.10.015
|
[16] |
R.Q. Xie, Y.M. Zhu, J. Liu, and Y.J. Li, The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz, Sep. Purif. Technol., 264(2021), art. No. 118445. doi: 10.1016/j.seppur.2021.118445
|
[17] |
V.A. Araujo, N. Lima, A. Azevedo, L. Bicalho, and J. Rubio, Column reverse rougher flotation of iron bearing fine tailings assisted by HIC and a new cationic collector, Miner. Eng., 156(2020), art. No. 106531. doi: 10.1016/j.mineng.2020.106531
|
[18] |
R. Li, C. Marion, E.R.L. Espiritu, R. Multani, X.Q. Sun, and K.E. Waters, Investigating the use of an ionic liquid for rare earth mineral flotation, J. Rare Earths, 39(2021), No. 7, p. 866. doi: 10.1016/j.jre.2020.09.003
|
[19] |
D. Azizi, F. Larachi, and M. Latifi, Ionic-liquid collectors for rare-earth minerals flotation:Case of tetrabutylammonium bis(2-ethylhexyl)-phosphate for monazite and bastnäsite recovery, Colloids Surf. A, 506(2016), p. 74. doi: 10.1016/j.colsurfa.2016.06.011
|
[20] |
X.C. Zhu, H.B. Wei, M.Y. Hou, Q.B. Wang, X.F. You, and L. Li, Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation, Fuel, 262(2020), art. No. 116627. doi: 10.1016/j.fuel.2019.116627
|
[21] |
H. Qiu, C. Degenhardt, N. Feuge, D. Goldmann, and R. Wilhelm, Influencing the froth flotation of LiAlO2 and melilite solid solution with ionic liquids, RSC Adv., 12(2022), No. 45, p. 29562. doi: 10.1039/D2RA02922G
|
[22] |
H. Sahoo, S.S. Rath, and B. Das, Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz, Sep. Purif. Technol., 136(2014), p. 66. doi: 10.1016/j.seppur.2014.08.034
|
[23] |
H. Sahoo, S.S. Rath, S.K. Jena, B.K. Mishra, and B. Das, Aliquat-336 as a novel collector for quartz flotation, Adv. Powder Technol., 26(2015), No. 2, p. 511. doi: 10.1016/j.apt.2014.12.010
|
[24] |
H. Sahoo, N. Sinha, S.S. Rath, and B. Das, Ionic liquids as novel quartz collectors: Insights from experiments and theory, Chem. Eng. J., 273(2015), p. 46. doi: 10.1016/j.cej.2015.03.050
|
[25] |
H. Sahoo, S.S. Rath, B. Das, and B.K. Mishra, Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths, Miner. Eng., 95(2016), p. 107. doi: 10.1016/j.mineng.2016.06.024
|
[26] |
H. Li, G. Mei, M. Yu, Q. Cheng, and G. Zhu, The mechanism study on aryl-substituted aromatic acid ionic liquid as the collector for quartz flotation, Physicochem. Probl. Miner. Process., 55(2019), No. 5, p. 1239.
|
[27] |
J.Q. Zhou, G.J. Mei, M.M. Yu, and X.W. Song, Effect and mechanism of quaternary ammonium salt ionic liquid as a collector on desulfurization and desilication from artificial mixed bauxite using flotation, Miner. Eng., 181(2022), art. No. 107523. doi: 10.1016/j.mineng.2022.107523
|
[28] |
Q.Z. Yuan, G.J. Mei, C. Liu, Q. Cheng, and S.Y. Yang, A novel sulfur-containing ionic liquid collector for the reverse flotation separation of pyrrhotite from magnetite, Sep. Purif. Technol., 303(2022), art. No. 122189. doi: 10.1016/j.seppur.2022.122189
|
[29] |
Q. Cheng, G.J. Mei, W. Xu, and Q.Z. Yuan, Flotation of quartz using imidazole ionic liquid collectors with different counterions, Miner. Eng., 180(2022), art. No. 107491. doi: 10.1016/j.mineng.2022.107491
|
[30] |
M. Wu, M.M. Yu, Q. Cheng, et al., Flotation recovery of Y2O3 from waste phosphors using ionic liquids as collectors, Chem. Phys. Lett., 825(2023), art. No. 140608. doi: 10.1016/j.cplett.2023.140608
|
[31] |
J. Fang, Y.Y. Ge, and J. Yu, Effects of particle size and wettability on froth stability in a collophane flotation system, Powder Technol., 379(2021), p. 576. doi: 10.1016/j.powtec.2020.11.028
|
[32] |
K.Y. Guo, T.F. Wang, G.Y. Yang, and J.F. Wang, Distinctly different bubble behaviors in a bubble column with pure liquids and alcohol solutions, J. Chem. Technol. Biotechnol., 92(2017), No. 2, p. 432. doi: 10.1002/jctb.5022
|
[33] |
S.R. Syeda, A. Afacan, and K.T. Chuang, Effect of surface tension gradient on froth stabilization and tray efficiency, Chem. Eng. Res. Des., 82(2004), No. 6, p. 762. doi: 10.1205/026387604774196046
|
[34] |
S. Andrew, Frothing in two-component liquid mixtures, [in] Proceedings of the Symposium on Chemical Process Hazards with Special Reference to Plant Design, United Kingdom, 1960, p. 73.
|
[35] |
G. Marrucci and L. Nicodemo, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chem. Eng. Sci., 22(1967), No. 9, p. 1257. doi: 10.1016/0009-2509(67)80190-8
|
[36] |
P.C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry , Revised and Expanded, CRC Press, Boca Raton, 2016.
|
[37] |
M.C. Fuerstenau and K.N. Han, Principles of Mineral Processing, SME media, Staines, 2003.
|
[38] |
L. Wang, Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation, Miner. Eng., 70(2015), p. 77. doi: 10.1016/j.mineng.2014.09.003
|
[39] |
X.Y. Zhu, H. Sun, D.J. Zhang, and C.B. Liu, Theoretical study on the interactions between methanol and imidazolium-based ionic liquids, J. Mol. Model., 17(2011), No. 8, p. 1997. doi: 10.1007/s00894-010-0879-1
|
[40] |
Y. Wang, H.R. Li, and S.J. Han, A theoretical investigation of the interactions between water molecules and ionic liquids, J. Phys. Chem. B, 110(2006), No. 48, p. 24646. doi: 10.1021/jp064134w
|
[41] |
J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions : Modern Sspects, Springer Science & Business Media, Berlin, 1998.
|
[42] |
H.L. Zhang, Z.J. Xu, W. Sun, et al., Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz, Sep. Purif. Technol., 275(2021), art. No. 119137. doi: 10.1016/j.seppur.2021.119137
|
[43] |
S.R. Rao, Surface Chemistry of Froth Flotation : Volume 1 : Fundamentals, Springer Science & Business Media, Berlin, 2013.
|
[44] |
V. Pino, C. Yao, and J.L. Anderson, Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures, J. Colloid Interface Sci., 333(2009), No. 2, p. 548. doi: 10.1016/j.jcis.2009.02.037
|
[45] |
J.J. Wang, L.M. Zhang, H.Y. Wang, and C.Z. Wu, Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution, J. Phys. Chem. B, 115(2011), No. 17, p. 4955. doi: 10.1021/jp201604u
|
[46] |
A. Rodríguez, M.D. Graciani, and M.L. Moyá, Effects of addition of polar organic solvents on micellization, Langmuir, 24(2008), No. 22, p. 12785. doi: 10.1021/la802320s
|