Cite this article as: |
Kaizong Xia, Zhiwei Si, Congxin Chen, Xiaoshuang Li, Junpeng Zou, and Jiahao Yuan, Numerical and theoretical study of large-scale failure of strata overlying sublevel caving mines with steeply dipping discontinuities, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1799-1815. https://doi.org/10.1007/s12613-024-2838-3 |
夏开宗 E-mail: kzxia@whrsm.ac.cn
[1] |
J. Chen, K.W. Shi, Y.Y. Pu, et al., Study on instability fracture and simulation of surrounding rock induced by fault activation under mining influence, Rock Mech. Bull., 2(2023), No. 2, art. No. 100037. doi: 10.1016/j.rockmb.2023.100037
|
[2] |
J. Han, Z.Q. Bi, B. Liang, C. Cao, and S.W. Ma, Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 1037. doi: 10.1016/j.ijmst.2022.09.028
|
[3] |
H.P. Kang, F.Q. Gao, G. Xu, and H.W. Ren, Mechanical behaviors of coal measures and ground control technologies for China’s deep coal mines–A review, J. Rock Mech. Geotech. Eng., 15(2023), No. 1, p. 37. doi: 10.1016/j.jrmge.2022.11.004
|
[4] |
K.M. Li, K.Y. Jiang, Y.H. Li, X. Wang, K. Liu, and S. Xu, Determination of the load bearing capacity of pre-stressed expandable props for ground support in underground mines, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 977. doi: 10.1016/j.ijmst.2023.05.003
|
[5] |
C.Q. Li, J. Zhou, K. Du, and D. Dias, Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 1019. doi: 10.1016/j.ijmst.2023.06.001
|
[6] |
S. Ram, P. Waclawik, J. Nemcik, et al., Mechanical behaviors of deep pillar sandwiched between strong and weak layers, J. Rock Mech. Geotech. Eng., 15(2023), No. 5, p. 1111. doi: 10.1016/j.jrmge.2022.11.006
|
[7] |
Y. Wang, Z.Q. Wang, A.X. Wu, et al., Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193. doi: 10.1007/s12613-022-2537-x
|
[8] |
K.Z. Xia, C.X. Chen, X.M. Liu, Y. Zheng, and H. Fu, Ground movement mechanism in tectonic stress metal mines with steep structure planes, J. Cent. South Univ., 24(2017), No. 9, p. 2092. doi: 10.1007/s11771-017-3618-2
|
[9] |
K.Z. Xia, X.M. Liu, C.X. Chen, Y. Zheng, Z.D. Lu, and Y.Y. Deng, Time-dependent ground movement behavior in a metal mine, Int. J. Geomech., 19(2019), No. 8, art. No. 04019095. doi: 10.1061/(ASCE)GM.1943-5622.0001479
|
[10] |
K.Z. Xia, C.X. Chen, Z.D. Lu, et al., Investigation of the ground movement due to underground mining at the Jinshandian Iron Mine in China, Environ. Earth Sci., 78(2019), No. 24, art. No. 715. doi: 10.1007/s12665-019-8753-7
|
[11] |
G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
|
[12] |
M. Svartsjaern, A prognosis methodology for underground infrastructure damage in sublevel cave mining, Rock Mech. Rock Eng., 52(2019), No. 1, p. 247. doi: 10.1007/s00603-018-1464-7
|
[13] |
M. Svartsjaern, D. Saiang, E. Nordlund, and A. Eitzenberger, Conceptual numerical modeling of large-scale footwall behavior at the Kiirunavaara mine, and implications for deformation monitoring, Rock Mech. Rock Eng., 49(2016), No. 3, p. 943. doi: 10.1007/s00603-015-0750-x
|
[14] |
G.W. Cheng, C.X. Chen, L.C. Li, et al., Numerical modelling of strata movement at footwall induced by underground mining, Int. J. Rock Mech. Min. Sci., 108(2018), p. 142. doi: 10.1016/j.ijrmms.2018.06.013
|
[15] |
G.W. Cheng, C.X. Chen, T.H. Ma, H.Y. Liu, and C.N. Tang, A case study on the strata movement mechanism and surface deformation regulation in Chengchao underground iron mine, Rock Mech. Rock Eng., 50(2017), No. 4, p. 1011. doi: 10.1007/s00603-016-1132-8
|
[16] |
K.Z. Xia, C.X. Chen, T.L. Wang, K.Y. Yang, and C.Q. Zhang, Investigation of mining-induced fault reactivation associated with sublevel caving in metal mines, Rock Mech. Rock Eng., 55(2022), No. 10, p. 5953. doi: 10.1007/s00603-022-02959-9
|
[17] |
K.Z. Xia, C.X. Chen, T.L. Wang, Y. Zheng, and Y. Wang, Estimating the geological strength index and disturbance factor in the Hoek–Brown criterion using the acoustic wave velocity in the rock mass, Eng. Geol., 306(2022), art. No. 106745. doi: 10.1016/j.enggeo.2022.106745
|
[18] |
K.Z. Xia, C.X. Chen, H. Fu, Y.C. Pan, and Y.Y. Deng, Mining-induced ground deformation in tectonic stress metal mines: A case study, Eng. Geol., 210(2016), p. 212. doi: 10.1016/j.enggeo.2016.06.018
|
[19] |
P. Hamdi, D. Stead, D. Elmo, and J. Töyrä, Use of an integrated finite/discrete element method-discrete fracture network approach to characterize surface subsidence associated with sub-level caving, Int. J. Rock Mech. Min. Sci., 103(2018), p. 55. doi: 10.1016/j.ijrmms.2018.01.021
|
[20] |
W.Z. Ren, C.M. Guo, Z.Q. Peng, and Y.G. Wang, Model experimental research on deformation and subsidence characteristics of ground and wall rock due to mining under thick overlying terrane, Int. J. Rock Mech. Min. Sci., 47(2010), No. 4, p. 614. doi: 10.1016/j.ijrmms.2009.12.012
|
[21] |
W.X. Li, L. Wen, and X.M. Liu, Ground movements caused by deep underground mining in Guan-Zhuang iron mine, Luzhong, China, Int. J. Appl. Earth Obs. Geoinf., 12(2010), No. 3, p. 175.
|
[22] |
B.H.G. Brady and E.T. Brown, Rock Mechanics for Underground Mining, Springer Science & Business Media, Berlin, 2006, p. 467.
|
[23] |
Y. Abolfazlzadeh and M. Hudyma, Identifying and describing a seismogenic zone in a sublevel caving mine, Rock Mech. Rock Eng., 49(2016), No. 9, p. 3735. doi: 10.1007/s00603-016-1017-x
|
[24] |
K. Ding, F.S. Ma, J. Guo, H.J. Zhao, R. Lu, and F. Liu, Investigation of the mechanism of roof caving in the Jinchuan Nickel Mine, China, Rock Mech. Rock Eng., 51(2018), No. 4, p. 1215. doi: 10.1007/s00603-017-1374-0
|
[25] |
A.L. Pinheiro, M.S. Lana, and F.G. Sobreira, Use of the distinct element method to study flexural toppling at the Pico Mine, Brazil, Bull. Eng. Geol. Environ., 74(2015), No. 4, p. 1177. doi: 10.1007/s10064-014-0713-6
|
[26] |
X.T. Liu, C.X. Chen, X.M. Liu, K.Z. Xia, and T.L. Wang, Investigation of the deformation failure occurring when extracting minerals via underground mining: A case study, Minerals, 12(2022), No. 8, art. No. 1025. doi: 10.3390/min12081025
|
[27] |
F.Q. Gao, D. Stead, and H.P. Kang, Simulation of roof shear failure in coal mine roadways using an innovative UDEC Trigon approach, Comput. Geotech., 61(2014), p. 33. doi: 10.1016/j.compgeo.2014.04.009
|
[28] |
C.Y. Sun, C.X. Chen, Y. Zheng, W. Zhang, and F. Liu, Numerical and theoretical study of bi-planar failure in footwall slopes, Eng. Geol., 260(2019), art. No. 105234. doi: 10.1016/j.enggeo.2019.105234
|
[29] |
E. Hoek, C.T. Carranza-Torres, and B. Corkum, Hoek–Brown Failure Criterion, [in] Proc. NARMS-TAC Conference, Toronto, 2002, p. 267.
|
[30] |
E. Hoek and E.T. Brown, The Hoek–Brown failure criterion and GSI–2018 edition, J. Rock Mech. Geotech. Eng., 11(2019), No. 3, p. 445. doi: 10.1016/j.jrmge.2018.08.001
|
[31] |
K.Z. Xia, C.X. Chen, X.T. Liu, X.M. Liu, J.H. Yuan, and S. Dang, Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill, Int. J. Rock Mech. Min. Sci., 170(2023), art. No. 105489. doi: 10.1016/j.ijrmms.2023.105489
|
[32] |
J.H. Zhong and X.L. Yang, Two-dimensional face stability analysis in rock masses governed by the Hoek–Brown strength criterion with a new multi-horn mechanism, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 963. doi: 10.1016/j.ijmst.2023.05.002
|
[33] |
Y.X. Yuan, N. Zhang, C.L. Han, and D.X. Liang, Automated identification of fissure trace in mining roadway via deep learning, J. Rock Mech. Geotech. Eng., 15(2023), No. 8, p. 2039. doi: 10.1016/j.jrmge.2022.12.018
|
[34] |
S.Q. Yang, W.L. Tian, P.G. Ranjith, X.R. Liu, M. Chen, and W. Cai, Three-dimensional failure behavior and cracking mechanism of rectangular solid sandstone containing a single fissure under triaxial compression, Rock Mech. Bull., 1(2022), No. 1, art. No. 100008. doi: 10.1016/j.rockmb.2022.100008
|
[35] |
F.Q. Wu, J. Wu, H. Bao, et al., Rapid intelligent evaluation method and technology for determining engineering rock mass quality, Rock Mech. Bull., 2(2023), No. 2, art. No. 100038. doi: 10.1016/j.rockmb.2023.100038
|
[36] |
K.Z. Xia, C.X. Chen, X.M. Liu, Y. Wang, X.T. Liu, and J.H. Yuan, Estimating shear strength of high-level pillars supported with cemented backfilling using the Hoek–Brown strength criterion, J. Rock Mech. Geotech. Eng., 16(2024), No. 2, p. 454. doi: 10.1016/j.jrmge.2023.06.004
|
[37] |
D.P. Adhikary, A.V. Dyskin, R.J. Jewell, and D.P. Stewart, A study of the mechanism of flexural toppling failure of rock slopes, Rock Mech. Rock Eng., 30(1997), No. 2, p. 75. doi: 10.1007/BF01020126
|
[38] |
H.S. Pang, C.X. Chen, K.Z. Xia, Y.Y. Deng, C.Q. Zhang, and C.Y. Sun, A methodology based on strain analysis for identifying potential discontinuous deformation zones in sublevel caving mines, Eng. Geol., 279(2020), art. No. 105872. doi: 10.1016/j.enggeo.2020.105872
|
[39] |
T. Villegas, E. Nordlund, and C. Dahnér-Lindqvist, Hangingwall surface subsidence at the Kiirunavaara Mine, Sweden, Eng. Geol., 121(2011), No. 1-2, p. 18. doi: 10.1016/j.enggeo.2011.04.010
|
[40] |
X.G. Dai and D.S. Gu, Theoretical analysis and calculation of lateral pressure coefficient in granular materials, Nonferrous Met., (1992), No. 3, p. 19.
|
[41] |
Ö. Aydan and T. Kawamoto, The stability of slopes and underground openings against flexural toppling and their stabilisation, Rock Mech. Rock Eng., 25(1992), No. 3, p. 143. doi: 10.1007/BF01019709
|
[42] |
Y. Zheng, Study on the Analytical Approach of Rock Layered Counter-tilt Slope Flexural Toppling Failure [Dissertation], Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 2015, p. 55.
|
[43] |
H.N. Zhang, Study on the Failure Mechanism of Block-flexure Toppling of Rock Slope [Dissertation], Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 2020, p. 71.
|
[44] |
Y. Zheng, R.Q. Wang, C.X. Chen, and F. Meng, Fast stability assessment of rock slopes subjected to flexural toppling failure using adaptive moment estimation (Adam) algorithm, Landslides, 19(2022), No. 9, p. 2149. doi: 10.1007/s10346-022-01902-x
|
[45] |
M. Amini, A. Majdi, and M.A. Veshadi, Stability analysis of rock slopes against block-flexure toppling failure, Rock Mech. Rock Eng., 45(2012), No. 4, p. 519. doi: 10.1007/s00603-012-0220-7
|