留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2143
  • HTML全文浏览量:  390
  • PDF下载量:  92
  • 被引次数: 0
Yubo Huang, Ning Xu, Huaile Lu, Yang Ren, Shilei Li, and Yandong Wang, Microstructures and micromechanical behaviors of high-entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1333-1349. https://doi.org/10.1007/s12613-024-2840-9
Cite this article as:
Yubo Huang, Ning Xu, Huaile Lu, Yang Ren, Shilei Li, and Yandong Wang, Microstructures and micromechanical behaviors of high-entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1333-1349. https://doi.org/10.1007/s12613-024-2840-9
引用本文 PDF XML SpringerLink
特约综述

基于同步辐射X射线与中子衍射技术的高熵合金微观组织与微观变形行为研究综述


  • 通讯作者:

    李时磊    E-mail: lishilei@ustb.edu.cn

    王沿东    E-mail: ydwang@ustb.edu.cn

文章亮点

  • (1) 总结了高熵合金形变机制的影响因素
  • (2) 综述了高熵合金的形变相变微观力学行为
  • (3) 汇总了同步辐射和中子技术对高熵合金形变过程中组织/应力演化研究
  • 高熵合金由于具有优异的力学性能以及耐腐蚀、抗辐照等特性,少数已经备选成为航空航天、国防科技等领域的应用材料。深入探究高熵合金的形变机制可以指导合金组织调控和强韧化设计,对认识和挖掘新型结构材料具有重要意义。而同步辐射和中子技术作为材料科学研究的重要工具,尤其在原位耦合物理场/化学场、解析材料宏观晶体学信息等方面具有巨大优势。近几年,大量学者利用同步辐射和中子技术研究高熵合金的形变、相变、应力行为以及变温、高压、加氢等原位过程。本文将简单阐述同步辐射和中子技术的原理和发展,并简要总结高熵合金形变机制的影响因素。我们将重点综述高熵合金在拉伸/压缩或蠕变/疲劳变形过程中的微观组织与微观变形行为的配合与演化,以及同步辐射和中子技术对高熵合金形变过程中位错/层错/孪晶/相变等组织变化和晶间/相间应力变化等的研究。并对今后同步辐射/中子技术的发展和新型金属材料形变机制的研究进行展望。
  • Invited Review

    Microstructures and micromechanical behaviors of high-entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review

    + Author Affiliations
    • High-entropy alloys (HEAs) possess outstanding features such as corrosion resistance, irradiation resistance, and good mechanical properties. A few HEAs have found applications in the fields of aerospace and defense. Extensive studies on the deformation mechanisms of HEAs can guide microstructure control and toughness design, which is vital for understanding and studying state-of-the-art structural materials. Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research, especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials. Recently, several researchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms, phase transformations, stress behaviors, and in situ processes of HEAs, such as variable-temperature, high-pressure, and hydrogenation processes. In this review, the principles and development of synchrotron X-ray and neutron diffraction are presented, and their applications in the deformation mechanisms of HEAs are discussed. The factors that influence the deformation mechanisms of HEAs are also outlined. This review focuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations, stacking faults, twins, phases, and intergrain/interphase stress changes. Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
    • loading
    • [1]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [2]
      J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat., 31(2006), No. 6, p. 633. doi: 10.3166/acsm.31.633-648
      [3]
      B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
      [4]
      O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
      [5]
      M. Feuerbacher, M. Heidelmann, and C. Thomas, Hexagonal high-entropy alloys, Mater. Res. Lett., 3(2015), No. 1, p. 1. doi: 10.1080/21663831.2014.951493
      [6]
      M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2(2014), No. 3, p. 107. doi: 10.1080/21663831.2014.912690
      [7]
      W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study, Metall. Mater. Trans. A, 44(2013), No. 5, p. 1994. doi: 10.1007/s11661-012-1474-0
      [8]
      P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, et al., Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd., 587(2014), p. 544. doi: 10.1016/j.jallcom.2013.10.237
      [9]
      L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Slip nucleation in single crystal FeNiCoCrMn high entropy alloy, Scripta Mater., 112(2016), p. 54. doi: 10.1016/j.scriptamat.2015.09.009
      [10]
      K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887. doi: 10.1016/j.actamat.2013.04.058
      [11]
      S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci., 85(2003), No. 5, p. 1404.
      [12]
      D. Liu, Q. Yu, S. Kabra, et al., Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin, Science, 378(2022), No. 6623, p. 978. doi: 10.1126/science.abp8070
      [13]
      B. Xiao, J. Zhang, S.F. Liu, et al., Ultrahigh intermediate-temperature strength and good tensile plasticity in chemically complex intermetallic alloys via lamellar architectures, Acta Mater., 262(2024), art. No. 119459. doi: 10.1016/j.actamat.2023.119459
      [14]
      C.L. Zhang, L.F. Huang, S.X. Li, K. Li, S.Y. Lu, and J.F. Li, Improved corrosion resistance of laser melting deposited CoCrFeNi-series high-entropy alloys by Al addition, Corros. Sci., 225(2023), art. No. 111599. doi: 10.1016/j.corsci.2023.111599
      [15]
      J.Y. Zhang, T.H. Chou, Y.H. Zhou, J.H. Luan, Y.L. Zhao, and T. Yang, Corrosion-resistant L12-strengthened high-entropy alloy with high strength and large ductility, Corros. Sci., 225(2023), art. No. 111593. doi: 10.1016/j.corsci.2023.111593
      [16]
      O. El Atwani, H.T. Vo, M.A. Tunes, et al., A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments, Nat. Commun., 14(2023), No. 1, art. No. 2516. doi: 10.1038/s41467-023-38000-y
      [17]
      R. Feng, Y. Rao, C.H. Liu, et al., Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun., 12(2021), art. No. 3588. doi: 10.1038/s41467-021-23689-6
      [18]
      Q.Y. Lin, J.P. Liu, X.H. An, H. Wang, Y. Zhang, and X.Z. Liao, Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy, Mater. Res. Lett., 6(2018), No. 4, p. 236. doi: 10.1080/21663831.2018.1434250
      [19]
      B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, et al., Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., 7(2016), art. No. 10602. doi: 10.1038/ncomms10602
      [20]
      L.H. Mills, M.G. Emigh, C.H. Frey, et al., Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy, Acta Mater., 245(2023), art. No. 118618. doi: 10.1016/j.actamat.2022.118618
      [21]
      A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 66(2014), No. 10, p. 1984. doi: 10.1007/s11837-014-1085-x
      [22]
      J.B. Seol, J.W. Bae, Z. Li, et al., Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater., 151(2018), p. 366. doi: 10.1016/j.actamat.2018.04.004
      [23]
      Z.Q. Wang, H.H. Wu, Y. Wu, et al., Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering, Mater. Today, 54(2022), p. 83. doi: 10.1016/j.mattod.2022.02.006
      [24]
      T. Yang, Y.L. Zhao, Y. Tong, et al., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362(2018), No. 6417, p. 933. doi: 10.1126/science.aas8815
      [25]
      D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, and J. Sun, A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability, J. Mater. Sci. Technol., 132(2023), p. 201. doi: 10.1016/j.jmst.2022.06.012
      [26]
      Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
      [27]
      Y. Yang, T.Y. Chen, L.Z. Tan, et al., Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy, Nature, 595(2021), No. 7866, p. 245. doi: 10.1038/s41586-021-03607-y
      [28]
      D.Y. Lin, L.Y. Xu, H.Y. Jing, et al., A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle, Addit. Manuf., 36(2020), art. No. 101591. doi: 10.1016/j.addma.2020.101591
      [29]
      S.J. Sun, Y.Z. Tian, H.R. Lin, et al., Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Mater. Sci. Eng. A, 712(2018), p. 603. doi: 10.1016/j.msea.2017.12.022
      [30]
      M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, and X.L. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength, Proc. Natl. Acad. Sci. USA, 115(2018), No. 28, p. 7224. doi: 10.1073/pnas.1807817115
      [31]
      E. Ma and X.L. Wu, Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy, Nat. Commun., 10(2019), No. 1, art. No. 5623. doi: 10.1038/s41467-019-13311-1
      [32]
      P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
      [33]
      S. Qin, M.X. Yang, P. Jiang, et al., Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility, Acta Mater., 230(2022), art. No. 117847. doi: 10.1016/j.actamat.2022.117847
      [34]
      Q.S. Pan, L.X. Zhang, R. Feng, et al., Gradient cell-structured high-entropy alloy with exceptional strength and ductility, Science, 374(2021), No. 6570, p. 984. doi: 10.1126/science.abj8114
      [35]
      Q.S. Pan, M.X. Yang, R. Feng, et al., Atomic faulting induced exceptional cryogenic strain hardening in gradient cell-structured alloy, Science, 382(2023), No. 6667, p. 185. doi: 10.1126/science.adj3974
      [36]
      L. Wang, J. Ding, S.S. Chen, et al., Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys, Nat. Mater., 22(2023), No. 8, p. 950. doi: 10.1038/s41563-023-01517-0
      [37]
      P.Y. Cao, J. Wang, P. Jiang, Y.J. Wang, F.P. Yuan, and X.L. Wu, Prediction of chemical short-range order in high-/medium-entropy alloys, J. Mater. Sci. Technol., 169(2024), p. 115. doi: 10.1016/j.jmst.2023.05.072
      [38]
      K. An and S.C. Fu, High Entropy Alloys : Advanced Synchrotron X-ray and Neutron Scattering Studies, Elsevier, Amsterdam, 2020, p. 381.
      [39]
      F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, and H.C. Pollock, Radiation from electrons in a synchrotron, Phys. Rev., 71(1947), No. 11, p. 829.
      [40]
      M.T. Hutchings, Introduction to the Characterization of Residual Stress by Neutron Diffraction, FL: Taylor & Francis, Boca Raton, 2005.
      [41]
      W. Reimers, A.R. Rita Pyzalla, A. Schreyer, and H. Clemens, Neutrons and Synchrotron Radiation in Engineering Materials Science : From Fundamentals to Material and Component Characterization, Wiley-VCH, Weinheim, 2008.
      [42]
      L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Mater., 122(2017), p. 11. doi: 10.1016/j.actamat.2016.09.032
      [43]
      F.X. Zhang, S.J. Zhao, K. Jin, et al., Local structure and short-range order in a NiCoCr solid solution alloy, Phys. Rev. Lett., 118(2017), No. 20, art. No. 205501. doi: 10.1103/PhysRevLett.118.205501
      [44]
      R.K. Nutor, T.D. Xu, X.L. Wang, et al., Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy, Mater. Today Commun., 30(2022), art. No. 103141. doi: 10.1016/j.mtcomm.2022.103141
      [45]
      F.X. Zhang, Y. Tong, K. Jin, et al., Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy, Mater. Res. Lett., 6(2018), No. 8, p. 450. doi: 10.1080/21663831.2018.1478332
      [46]
      Y. Tong, K. Jin, H. Bei, et al., Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction, Mater. Des., 155(2018), p. 1. doi: 10.1016/j.matdes.2018.05.056
      [47]
      N. Derimow, L. Santodonato, R. Mills, and R. Abbaschian, In-situ imaging of liquid phase separation in molten alloys using cold neutrons, J. Imaging, 4(2017), No. 1, art. No. 5. doi: 10.3390/jimaging4010005
      [48]
      N. Derimow, L.J. Santodonato, B.E. MacDonald, B. Le, E.J. Lavernia, and R. Abbaschian, In-situ imaging of molten high-entropy alloys using cold neutrons, J. Imaging, 5(2019), No. 2, art. No. 29. doi: 10.3390/jimaging5020029
      [49]
      J. Yan, W.X. Dong, P.J. Shi, et al., Synchrotron X-ray study of heterostructured materials: A review, JOM, 75(2023), No. 5, p. 1423. doi: 10.1007/s11837-023-05711-y
      [50]
      N.R. Jaladurgam, H.J. Li, J. Kelleher, C. Persson, A. Steuwer, and M.H. Colliander, Microstructure-dependent deformation behaviour of a low γ' volume fraction Ni-base superalloy studied by in situ neutron diffraction, Acta Mater., 183(2020), p. 182. doi: 10.1016/j.actamat.2019.11.003
      [51]
      H.Y. Chen, Y.D. Wang, Z.H. Nie, et al., Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals, Nat. Mater., 19(2020), No. 7, p. 712. doi: 10.1038/s41563-020-0645-4
      [52]
      H.Y. He, M. Naeem, F. Zhang, et al., Stacking fault driven phase transformation in CrCoNi medium entropy alloy, Nano Lett., 21(2021), No. 3, p. 1419. doi: 10.1021/acs.nanolett.0c04244
      [53]
      O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development–properties–application, Int. J. Plast., 16(2000), No. 10-11, p. 1391. doi: 10.1016/S0749-6419(00)00015-2
      [54]
      Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, and C.T. Liu, The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys, Scripta Mater., 130(2017), p. 96. doi: 10.1016/j.scriptamat.2016.11.014
      [55]
      B.C. De Cooman, Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater., 142(2018), p. 283. doi: 10.1016/j.actamat.2017.06.046
      [56]
      D.X. Wei, X.Q. Li, S. Schönecker, et al., Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys, Acta Mater., 181(2019), p. 318. doi: 10.1016/j.actamat.2019.09.050
      [57]
      W. Woo, Y.S. Kim, H.B. Chae, et al., Competitive strengthening between dislocation slip and twinning in cast-wrought and additively manufactured CrCoNi medium entropy alloys, Acta Mater., 246(2023), art. No. 118699. doi: 10.1016/j.actamat.2023.118699
      [58]
      W. Woo, J.S. Jeong, D.K. Kim, et al., Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction, Sci. Rep., 10(2020), No. 1, art. No. 1350. doi: 10.1038/s41598-020-58273-3
      [59]
      G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., 128(2017), p. 292. doi: 10.1016/j.actamat.2017.02.036
      [60]
      S.F. Liu, Y. Wu, H.T. Wang, et al., Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93(2018), p. 269. doi: 10.1016/j.intermet.2017.10.004
      [61]
      L. Tang, F.Q. Jiang, J.S. Wróbel, et al. , In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy, J. Mater. Sci. Technol., 116(2022), p. 103. doi: 10.1016/j.jmst.2021.10.034
      [62]
      Y.Q. Wang, B. Liu, K. Yan, et al., Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction, Acta Mater., 154(2018), p. 79. doi: 10.1016/j.actamat.2018.05.013
      [63]
      A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65(2013), No. 12, p. 1780. doi: 10.1007/s11837-013-0771-4
      [64]
      N.L. Okamoto, S. Fujimoto, Y. Kambara, et al., Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep., 6(2016), art. No. 35863. doi: 10.1038/srep35863
      [65]
      Q.Q. Ding, Y. Zhang, X. Chen, et al., Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574(2019), p. 223. doi: 10.1038/s41586-019-1617-1
      [66]
      S.F. Liu, Y. Wu, H.T. Wang, et al., Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy, J. Alloys Compd., 792(2019), p. 444. doi: 10.1016/j.jallcom.2019.04.035
      [67]
      J.B. Liu, C.X. Chen, Y.Q. Xu, et al., Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in situ TEM study, Scripta Mater., 137(2017), p. 9. doi: 10.1016/j.scriptamat.2017.05.001
      [68]
      X.D. Xu, P. Liu, Z. Tang, et al., Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi, Acta Mater., 144(2018), p. 107. doi: 10.1016/j.actamat.2017.10.050
      [69]
      L. Tang, K. Yan, B. Cai, et al., Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15K, Scripta Mater., 178(2020), p. 166. doi: 10.1016/j.scriptamat.2019.11.026
      [70]
      B. Cai, B. Liu, S. Kabra, et al., Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction, Acta Mater., 127(2017), p. 471. doi: 10.1016/j.actamat.2017.01.034
      [71]
      D.X. Wei, W. Gong, T. Tsuru, et al. Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys, Int. J. Plast., 159(2022), art. No. 103443. doi: 10.1016/j.ijplas.2022.103443
      [72]
      M. Frank, S.S. Nene, Y. Chen, et al., Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in situ neutron diffraction, Sci. Rep., 10(2020), No. 1, art. No. 22263. doi: 10.1038/s41598-020-79492-8
      [73]
      S. Picak, J. Liu, C. Hayrettin, et al., Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip, Acta Mater., 181(2019), p. 555. doi: 10.1016/j.actamat.2019.09.048
      [74]
      X. Wang, R.R. De Vecchis, C.Y. Li, et al., Design metastability in high-entropy alloys by tailoring unstable fault energies, Sci. Adv., 8(2022), No. 36, art. No. eabo7333. doi: 10.1126/sciadv.abo7333
      [75]
      J. Couzinie, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, and I. Guillot, On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Mater. Sci. Eng. A, 645(2015), p. 255. doi: 10.1016/j.msea.2015.08.024
      [76]
      G. Dirras, L. Lilensten, P. Djemia, et al., Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy, Mater. Sci. Eng. A, 654(2016), p. 30. doi: 10.1016/j.msea.2015.12.017
      [77]
      Y.D. Wu, Y.H. Cai, T. Wang, et al., A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277. doi: 10.1016/j.matlet.2014.05.134
      [78]
      L. Qi and D.C. Chrzan, Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys, Phys. Rev. Lett., 112(2014), No. 11, art. No. 115503. doi: 10.1103/PhysRevLett.112.115503
      [79]
      S. Sheikh, S. Shafeie, Q. Hu, et al., Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys., 120(2016), No. 16, art. No. 164902. doi: 10.1063/1.4966659
      [80]
      F.Y. Tian, L.K. Varga, N.X. Chen, J. Shen, and L. Vitos, Ab initio design of elastically isotropic TiZrNbMoV high-entropy alloys, J. Alloys Compd., 599(2014), p. 19. doi: 10.1016/j.jallcom.2014.01.237
      [81]
      H.L. Huang, Y. Wu, J.Y. He, et al., Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678. doi: 10.1002/adma.201701678
      [82]
      B. Chen, S.Z. Li, H.X. Zong, X.D. Ding, J. Sun, and E. Ma, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Proc. Natl. Acad. Sci. USA, 117(2020), No. 28, p. 16199. doi: 10.1073/pnas.1919136117
      [83]
      X.Y. Li, Z. Zhang, and J.W. Wang, Deformation twinning in body-centered cubic metals and alloys, Prog. Mater. Sci., 139(2023), art. No. 101160. doi: 10.1016/j.pmatsci.2023.101160
      [84]
      B. Chen, S.Z. Li, J. Ding, X.D. Ding, J. Sun, and E. Ma, Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys, Scripta Mater., 222(2023), art. No. 115048. doi: 10.1016/j.scriptamat.2022.115048
      [85]
      X.L. Wu, Chemical short-range orders in high-/ medium-entropy alloys, J. Mater. Sci. Technol., 147(2023), p. 189. doi: 10.1016/j.jmst.2022.10.070
      [86]
      Y.H. Wang, M.Y. Jiao, Y. Wu, et al., Enhancing properties of high-entropy alloys via manipulation of local chemical ordering, J. Mater. Sci. Technol., 180(2024), p. 23. doi: 10.1016/j.jmst.2023.10.003
      [87]
      J. Ding and Z.J. Wang, Local chemical order in high-entropy alloys, Acta Metall. Sin., 57(2021), No. 4, p. 413.
      [88]
      R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
      [89]
      X.F. Chen, Q. Wang, Z.Y. Cheng, et al., Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592(2021), No. 7856, p. 712. doi: 10.1038/s41586-021-03428-z
      [90]
      Y.Q. Bu, Y. Wu, Z.F. Lei, et al., Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys, Mater. Today, 46(2021), p. 28. doi: 10.1016/j.mattod.2021.02.022
      [91]
      Y. Wu, F. Zhang, F.S. Li, et al., Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics, Mater. Horiz., 9(2022), No. 2, p. 804. doi: 10.1039/D1MH01612A
      [92]
      J.Y. He, Q. Wang, H.S. Zhang, et al., Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy, Sci. Bull., 63(2018), No. 6, p. 362. doi: 10.1016/j.scib.2018.01.022
      [93]
      C.C. Juan, M.H. Tsai, C.W. Tsai, et al., Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett., 184(2016), p. 200. doi: 10.1016/j.matlet.2016.08.060
      [94]
      P. Sathiyamoorthi, J. Moon, J.W. Bae, P. Asghari-Rad, and H.S. Kim, Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing, Scripta Mater., 163(2019), p. 152. doi: 10.1016/j.scriptamat.2019.01.016
      [95]
      Z.M. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater., 131(2017), p. 323. doi: 10.1016/j.actamat.2017.03.069
      [96]
      P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, et al., Effect of initial grain size on deformation mechanism during high-pressure torsion in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy, Adv. Eng. Mater., 22(2020), No. 1, art. No. 1900587. doi: 10.1002/adem.201900587
      [97]
      B. Schuh, F. Mendez-Martin, B. Völker, et al., Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96(2015), p. 258. doi: 10.1016/j.actamat.2015.06.025
      [98]
      P. Sathiyamoorthi and H.S. Kim, Nanocrystalline High Entropy Alloys : Processing and Properties, Elsevier, Amsterdam, 2021, p. 372.
      [99]
      M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature, Acta Mater., 52(2004), No. 18, p. 5381. doi: 10.1016/j.actamat.2004.07.044
      [100]
      X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. USA, 111(2014), No. 20, p. 7197. doi: 10.1073/pnas.1324069111
      [101]
      Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, and L. Lu, Extra strengthening and work hardening in gradient nanotwinned metals, Science, 362(2018), No. 6414, art. No. eaau1925. doi: 10.1126/science.aau1925
      [102]
      S.K. Guo, Z.L. Ma, G.H. Xia, et al., Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure, Acta Mater., 263(2024), art. No. 119492. doi: 10.1016/j.actamat.2023.119492
      [103]
      J. Su, D. Raabe, and Z.M. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP–TWIP high-entropy alloy, Acta Mater., 163(2019), p. 40. doi: 10.1016/j.actamat.2018.10.017
      [104]
      Y.D. Wang, Y.K. Wang, S.L. Li, and R.G. Li, Synchrotron-based high-energy X-ray diffraction and microdiffraction investigations on the mechanical heterogeneity of heterostructured metals, Scripta Mater., 224(2023), art. No. 115144. doi: 10.1016/j.scriptamat.2022.115144
      [105]
      F.J. Wang, Y. Zhang, and G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy, J. Alloys Compd., 478(2009), No. 1-2, p. 321. doi: 10.1016/j.jallcom.2008.11.059
      [106]
      Y. Wu, W.H. Liu, X.L. Wang, et al. , In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104(2014), No. 5, art. No. 051910. doi: 10.1063/1.4863748
      [107]
      E. Huang, D.J. Yu, J. Yeh, C. Lee, K. An, and S. Tu, A study of lattice elasticity from low entropy metals to medium and high entropy alloys, Scripta Mater., 101(2015), p. 32. doi: 10.1016/j.scriptamat.2015.01.011
      [108]
      Q.F. He, J.G. Wang, H.A. Chen, et al., A highly distorted ultraelastic chemically complex Elinvar alloy, Nature, 602(2022), No. 7896, p. 251. doi: 10.1038/s41586-021-04309-1
      [109]
      G. Ribárik, B. Jóni, and T. Ungár, The convolutional multiple whole profile (CMWP) fitting method, a global optimization procedure for microstructure determination, Crystals, 10(2020), No. 7, art. No. 623. doi: 10.3390/cryst10070623
      [110]
      G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22. doi: 10.1016/0001-6160(53)90006-6
      [111]
      B.E. Warren and B.L. Averbach, The separation of cold-work distortion and particle size broadening in X-ray patterns, J. Appl. Phys., 23(1952), No. 4, p. 497. doi: 10.1063/1.1702234
      [112]
      I.V. Ivanov, K.I. Emurlaev, K.E. Kuper, S.A. Akkuzin, and I.A. Bataev, Deconvolution-based peak profile analysis methods for characterization of CoCrFeMnNi high-entropy alloy, Heliyon, 8(2022), No. 9, art. No. e10541. doi: 10.1016/j.heliyon.2022.e10541
      [113]
      C. Lee, F. Maresca, R. Feng, et al., Strength can be controlled by edge dislocations in refractory high-entropy alloys, Nat. Commun., 12(2021), No. 1, art. No. 5474. doi: 10.1038/s41467-021-25807-w
      [114]
      Q.J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10(2019), No. 1, art. No. 3563. doi: 10.1038/s41467-019-11464-7
      [115]
      B.L. Yin, S. Yoshida, N. Tsuji, and W.A. Curtin, Yield strength and misfit volumes of NiCoCr and implications for short-range-order, Nat. Commun., 11(2020), No. 1, art. No. 2507. doi: 10.1038/s41467-020-16083-1
      [116]
      T.M. Smith, M.S. Hooshmand, B.D. Esser, et al., Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy, Acta Mater., 110(2016), p. 352. doi: 10.1016/j.actamat.2016.03.045
      [117]
      Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the stacking fault energy fluctuations on the strengthening of alloys, Acta Mater., 164(2019), p. 1. doi: 10.1016/j.actamat.2018.09.066
      [118]
      P. Thirathipviwat, Y. Onuki, G. Song, J. Han, and S. Sato, Evaluation of dislocation activities and accumulation in cold swaged CoCrFeMnNi high entropy alloy, J. Alloys Compd., 890(2022), art. No. 161816. doi: 10.1016/j.jallcom.2021.161816
      [119]
      W. Woo, E.W. Huang, J.W. Yeh, H. Choo, C. Lee, and S.Y. Tu, In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy, Intermetallics, 62(2015), p. 1. doi: 10.1016/j.intermet.2015.02.020
      [120]
      M.Y. Luo, T.N. Lam, P.T. Wang, et al., Grain-size-dependent microstructure effects on cyclic deformation mechanisms in CoCrFeMnNi high-entropy-alloys, Scripta Mater., 210(2022), art. No. 114459. doi: 10.1016/j.scriptamat.2021.114459
      [121]
      T.N. Lam, S.Y. Lee, N.T. Tsou, et al., Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy, Acta Mater., 201(2020), p. 412. doi: 10.1016/j.actamat.2020.10.016
      [122]
      T.N. Lam, H.H. Chin, X. Zhang, et al., Tensile overload-induced texture effects on the fatigue resistance of a CoCrFeMnNi high-entropy alloy, Acta Mater., 245(2023), art. No. 118585. doi: 10.1016/j.actamat.2022.118585
      [123]
      S.Y. Huang, D.W. Brown, B. Clausen, Z.K. Teng, Y.F. Gao, and P.K. Liaw, In situ neutron-diffraction studies on the creep behavior of a ferritic superalloy, Metall. Mater. Trans. A, 43(2012), No. 5, p. 1497. doi: 10.1007/s11661-011-0979-2
      [124]
      G.M. Stoica, A.D. Stoica, M.K. Miller, and D. Ma, Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy, Nat. Commun., 5(2014), art. No. 5178. doi: 10.1038/ncomms6178
      [125]
      D. Caillard, Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature, Acta Mater., 58(2010), No. 9, p. 3493. doi: 10.1016/j.actamat.2010.02.023
      [126]
      C. Lee, G. Kim, Y. Chou, et al., Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. doi: 10.1126/sciadv.aaz4748
      [127]
      J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, and Y.M. Koo, In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels, Acta Mater., 60(2012), No. 5, p. 2290. doi: 10.1016/j.actamat.2011.12.043
      [128]
      J.S. Jeong, Y.M. Koo, I.K. Jeong, S.K. Kim, and S.K. Kwon, Micro-structural study of high-Mn TWIP steels using diffraction profile analysis, Mater. Sci. Eng. A, 530(2011), p. 128. doi: 10.1016/j.msea.2011.09.060
      [129]
      B.E. Warren, X-ray studies of deformed metals, Prog. Met. Phys., 8(1959), p. 147. doi: 10.1016/0502-8205(59)90015-2
      [130]
      M.M.J. Treacy, J.M. Newsam, and M.W. Deem, A general recursion method for calculating diffracted intensities from crystals containing planar faults, Proc. R. Soc. Lond. Ser. A, 433(1991), No. 1889, p. 499. doi: 10.1098/rspa.1991.0062
      [131]
      L. Balogh, G. Ribárik, and T. Ungár, Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis, J. Appl. Phys., 100(2006), No. 2, art. No. 023512. doi: 10.1063/1.2216195
      [132]
      D.R. Steinmetz, T. Jäpel, B. Wietbrock, et al., Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments, Acta Mater., 61(2013), No. 2, p. 494. doi: 10.1016/j.actamat.2012.09.064
      [133]
      J.W. Yeh, Strength through high slip-plane density, Science, 374(2021), No. 6570, p. 940. doi: 10.1126/science.abm0120
      [134]
      M. Frank, S.S. Nene, Y. Chen, et al., Direct evidence of the stacking fault-mediated strain hardening phenomenon, Appl. Phys. Lett., 119(2021), No. 8, art. No. 081906. doi: 10.1063/5.0062153
      [135]
      C. Hu, C.P. Huang, Y.X. Liu, A. Perlade, K.Y. Zhu, and M.X. Huang, The dual role of TRIP effect on ductility and toughness of a medium Mn steel, Acta Mater., 245(2023), art. No. 118629. doi: 10.1016/j.actamat.2022.118629
      [136]
      S. Chen, H.S. Oh, B. Gludovatz, et al., Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy, Nat. Commun., 11(2020), No. 1, art. No. 826. doi: 10.1038/s41467-020-14641-1
      [137]
      N. Xu, S.L. Li, R.G. Li, et al. , In situ investigation of the deformation behaviors of Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys by high-energy X-ray diffraction, Mater. Sci. Eng. A, 795(2020), art. No. 139936. doi: 10.1016/j.msea.2020.139936
      [138]
      L. Wang, C. Fu, Y.D. Wu, R.G. Li, Y.D. Wang, and X.D. Hui, Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning, Mater. Sci. Eng. A, 763(2019), art. No. 138147. doi: 10.1016/j.msea.2019.138147
      [139]
      Y.J. Shi, S.L. Li, T.L. Lee, et al., In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy, Mater. Sci. Eng. A, 771(2020), art. No. 138555. doi: 10.1016/j.msea.2019.138555
      [140]
      L.L. Ma, L. Wang, Z.H. Nie, et al., Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction, Acta Mater., 128(2017), p. 12. doi: 10.1016/j.actamat.2017.02.014
      [141]
      L. Wang, C. Fu, Y.D. Wu, R.G. Li, X.D. Hui, and Y.D. Wang, Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation, Scripta Mater., 162(2019), p. 112. doi: 10.1016/j.scriptamat.2018.10.035
      [142]
      J.J. Gao, P. Castany, and T. Gloriant, Synthesis and characterization of a new TiZrHfNbTaSn high-entropy alloy exhibiting superelastic behavior, Scripta Mater., 198(2021), art. No. 113824. doi: 10.1016/j.scriptamat.2021.113824
      [143]
      S.L. Li, Y. Li, Y.K. Wang, et al., Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology, Acta Metall. Sin., 59(2023), No. 8, p. 1001.
      [144]
      S.R. MacEwen, J. Faber Jr, and A.P.L. Turner, The use of time-of-flight neutron diffraction to study grain interaction stresses, Acta Metall., 31(1983), No. 5, p. 657. doi: 10.1016/0001-6160(83)90082-2
      [145]
      M.L. Wang, Y.P. Lu, J.G. Lan, et al., Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications, Acta Mater., 248(2023), art. No. 118806. doi: 10.1016/j.actamat.2023.118806
      [146]
      Y.H. Jia, Z.J. Wang, Q.F. Wu, et al., Boron microalloying for high-temperature eutectic high-entropy alloys, Acta Mater., 262(2024), art. No. 119427. doi: 10.1016/j.actamat.2023.119427
      [147]
      D. Yun, H. Chae, T. Lee, et al., Stress contribution of B2 phase in Al0.7CoCrFeNi eutectic high entropy alloy, J. Alloys Compd., 918(2022), art. No. 165673. doi: 10.1016/j.jallcom.2022.165673
      [148]
      J. Ren, Y. Zhang, D. Zhao, et al., Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing, Nature, 608(2022), No. 7921, p. 62. doi: 10.1038/s41586-022-04914-8
      [149]
      J.V. Gordon, R.E. Lim, M.J. Wilkin, D.C. Pagan, R.A. Lebensohn, and A.D. Rollett, Evaluating the grain-scale deformation behavior of a single-phase FCC high entropy alloy using synchrotron high energy diffraction microscopy, Acta Mater., 215(2021), art. No. 117120. doi: 10.1016/j.actamat.2021.117120
      [150]
      M. Naeem, H.Y. He, F. Zhang, et al., Cooperative deformation in high-entropy alloys at ultralow temperatures, Sci. Adv., 6(2020), No. 13, art. No. eaax4002. doi: 10.1126/sciadv.aax4002

    Catalog


    • /

      返回文章
      返回