留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(14)

数据统计

分享

计量
  • 文章访问数:  163
  • HTML全文浏览量:  67
  • PDF下载量:  8
  • 被引次数: 0
Shenghua Wu, Chong Yang, Peng Zhang, Hang Xue, Yihan Gao, Yuqing Wang, Ruihong Wang, Jinyu Zhang, Gang Liu, and Jun Sun, Review of Sc microalloying effects in Al–Cu alloys, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2841-8
Cite this article as:
Shenghua Wu, Chong Yang, Peng Zhang, Hang Xue, Yihan Gao, Yuqing Wang, Ruihong Wang, Jinyu Zhang, Gang Liu, and Jun Sun, Review of Sc microalloying effects in Al–Cu alloys, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2841-8
引用本文 PDF XML SpringerLink

Al–Cu合金中Sc微合金化效应综述

  • 通讯作者:

    刘刚    E-mail: lgsammer@xjtu.edu.cn

    孙军    E-mail: junsun@xjtu.edu.cn

文章亮点

  • (1) 系统地研究了Sc微合金化效应对不同晶粒尺寸Al–Cu合金微观组织的影响规律。
  • (2) 开发了热稳定性优异和强塑性高的纳米晶Al–Cu–Sc合金。
  • (3) 总结并提出了不同数量级空位浓度形成的原子–空位复合体对铝合金微观组织演变具有显著影响。
  • 在铝(Aluminum,Al)合金中,人为调控固态相变析出是获得优异性能的有效方法。微合金化策略是目前广泛采用和有效调控固态相变析出的方法之一。本文详细总结了Sc微合金化效应对不同晶粒尺寸Al–Cu合金微观组织演变和力学性能的影响。在粗晶Al–Cu合金中,淬火空位、微合金化Sc原子、固溶Cu原子共同形成的Cu/Sc/空位复合体可以作为异质形核点促进θ′相析出,同时Sc原子偏聚在θ′/Al基体界面上可以降低界面能,进一步促进θ′相析出。细化晶粒尺寸至细晶/超细晶尺度,由于Sc的扩散速率显著小于Cu,具有较高结合能的Cu/Sc/空位复合体可以有效抑制Cu扩散至晶界形成的不利沿晶θ相,从而促进有利的晶内θ′相析出。在纳米晶尺度,由于大变形施加的高应变量可以产生高浓度空位,进而在Al基体中形成高数量密度、尺寸在1–2 nm的富(Cu、Sc、空位)原子复合体。这种原子–空位复合体由于空位含量较高,因此具有较高的结合能和热稳定性,同时可以有效阻碍位错运动,使得纳米晶Al–Cu–Sc合金具有优异的热稳定性和强韧化水平。本文推荐使用微合金化方法来改变Al合金的析出行为,从而获得更优异的力学性能和热稳定性。
  • Invited Review

    Review of Sc microalloying effects in Al–Cu alloys

    + Author Affiliations
    • Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties, and the microalloying strategy is the most frequently adopted method for such a purpose. In this paper, recent advances in length-scale-dependent scandium (Sc) microalloying effects in Al–Cu model alloys are reviewed. In coarse-grained Al–Cu alloys, the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al2Cu/matrix interface that reduces interfacial energy contribute significantly to θ′ precipitation. By grain size refinement to the fine/ultrafine-grained scale, the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries, promoting the desired intragranular θ′ precipitation. At nanocrystalline scale, the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu, Sc, vacancy)-rich atomic complexes with high thermal stability, outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation. This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys.
    • loading
    • [1]
      J.W. Martin, Precipitation Hardening, 2nd ed., Butterworth-Heinemann, Woburn, MA, 1998.
      [2]
      A. Deschamps and C.R. Hutchinson, Precipitation kinetics in metallic alloys: Experiments and modeling, Acta Mater., 220(2021), art. No. 117338. doi: 10.1016/j.actamat.2021.117338
      [3]
      D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., CRC Press, Boca Raton, 1992.
      [4]
      L. Bourgeois, Y. Zhang, Z.Z. Zhang, Y.Q. Chen, and N.V. Medhekar, Transforming solid-state precipitates via excess vacancies, Nat. Commun., 11(2020), No. 1, art. No. 1248. doi: 10.1038/s41467-020-15087-1
      [5]
      Y.Q. Chen, Z.Z. Zhang, Z. Chen, et al., The enhanced theta-prime (θ′) precipitation in an Al–Cu alloy with trace Au additions, Acta Mater., 125(2017), p. 340. doi: 10.1016/j.actamat.2016.12.012
      [6]
      K.C. Russell, Nucleation in solids: The induction and steady state effects, Adv. Colloid Interface Sci., 13(1980), No. 3-4, p. 205. doi: 10.1016/0001-8686(80)80003-0
      [7]
      C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20(1949), No. 10, p. 950. doi: 10.1063/1.1698258
      [8]
      J.D. Boyd and R.B. Nicholson, A calorimetric determination of precipitate interfacial energies in two Al–Cu alloys, Acta Metall., 19(1971), No. 10, p. 1101. doi: 10.1016/0001-6160(71)90042-3
      [9]
      G. Liu, G.J. Zhang, X.D. Ding, J. Sun, and K.H. Chen, Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates, Mater. Sci. Eng. A, 344(2003), No. 1-2, p. 113. doi: 10.1016/S0921-5093(02)00398-2
      [10]
      G. Liu, J. Sun, C.W. Nan, and K.H. Chen, Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys, Acta Mater., 53(2005), No. 12, p. 3459. doi: 10.1016/j.actamat.2005.04.002
      [11]
      Ø. Grong and H.R. Shercliff, Microstructural modelling in metals processing, Prog. Mater. Sci., 47(2002), No. 2, p. 163. doi: 10.1016/S0079-6425(00)00004-9
      [12]
      Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater., 52(2004), No. 15, p. 4589. doi: 10.1016/j.actamat.2004.06.017
      [13]
      Y.X. Geng, H. Tang, J.H. Xu, et al., Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1770. doi: 10.1007/s12613-021-2287-1
      [14]
      V. Radmilovic, C. Ophus, E.A. Marquis, et al., Highly monodisperse core-shell particles created by solid-state reactions, Nat. Mater., 10(2011), No. 9, p. 710. doi: 10.1038/nmat3077
      [15]
      S.P. Yuan, G. Liu, R.H. Wang, et al., Coupling effect of multiple precipitates on the ductile fracture of aged Al–Mg–Si alloys, Scripta Mater., 57(2007), No. 9, p. 865. doi: 10.1016/j.scriptamat.2007.06.063
      [16]
      G. Liu, G. Zhang, R. Wang, W. Hu, J. Sun, and K. Chen, Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys, Acta Mater., 55(2007), No. 1, p. 273. doi: 10.1016/j.actamat.2006.08.026
      [17]
      M.J. Starink and S.C. Wang, A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater., 51(2003), No. 17, p. 5131. doi: 10.1016/S1359-6454(03)00363-X
      [18]
      O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys, Acta Mater., 49(2001), No. 1, p. 65. doi: 10.1016/S1359-6454(00)00301-3
      [19]
      S.P. Ringer and K. Hono, Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies, Mater. Charact., 44(2000), No. 1-2, p. 101. doi: 10.1016/S1044-5803(99)00051-0
      [20]
      L.Z. He, Y.H. Cao, Y.Z. Zhou, and J.Z. Cui, Effects of Ag addition on the microstructures and properties of Al–Mg–Si–Cu alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 62. doi: 10.1007/s12613-018-1547-1
      [21]
      J.Y. Zhang, Y.H. Gao, C. Yang, et al., Microalloying Al alloys with Sc: A review, Rare Met., 39(2020), No. 6, p. 636. doi: 10.1007/s12598-020-01433-1
      [22]
      K. Ganjehfard, R. Taghiabadi, M.T. Noghani, and M.H. Ghoncheh, Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 718. doi: 10.1007/s12613-020-2039-7
      [23]
      H.K. Hardy, The ageing characteristics of ternary aluminium–copper alloys with cadmium, indium, or tin, J. Inst. Met., 80(1952), p. 483.
      [24]
      L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, and B.C. Muddle, The magic thicknesses of θ′ precipitates in Sn-microalloyed Al–Cu, Acta Mater., 60(2012), No. 2, p. 633. doi: 10.1016/j.actamat.2011.10.015
      [25]
      L. Bourgeois, J.F. Nie, and B.C. Muddle, Assisted nucleation of θ′ phase in Al–Cu–Sn: The modified crystallography of tin precipitates, Philos. Mag., 85(2005), No. 29, p. 3487. doi: 10.1080/14786430500228473
      [26]
      T. Homma, M.P. Moody, D.W. Saxey, and S.P. Ringer, Effect of Sn addition in preprecipitation stage in Al–Cu alloys: A correlative transmission electron microscopy and atom probe tomography study, Metall. Mater. Trans. A, 43(2012), No. 7, p. 2192. doi: 10.1007/s11661-012-1111-y
      [27]
      D. Mitlin, J.W. Morris, V. Radmilovic, and U. Dahmen, Precipitation and aging in Al–Si–Ge–Cu, Metall. Mater. Trans. A, 32(2001), No. 1, p. 197. doi: 10.1007/s11661-998-0335-3
      [28]
      T. Sato, S. Hirosawa, K. Hirose, and T. Maeguchi, Roles of microalloying elements on the cluster formation in the initial stage of phase decomposition of Al-based alloys, Metall. Mater. Trans. A, 34(2003), No. 12, p. 2745. doi: 10.1007/s11661-003-0176-z
      [29]
      A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation, Acta Mater., 59(2011), No. 15, p. 6187. doi: 10.1016/j.actamat.2011.06.036
      [30]
      A. Biswas, D.J. Siegel, and D.N. Seidman, Simultaneous segregation at coherent and semicoherent heterophase interfaces, Phys. Rev. Lett., 105(2010), No. 7, art. No. 076102. doi: 10.1103/PhysRevLett.105.076102
      [31]
      S.P. Ringer, K. Hono, and T. Sakurai, The effect of trace additions of Sn on precipitation in Al–Cu alloys: An atom probe field ion microscopy study, Metall. Mater. Trans. A, 26(1995), No. 9, p. 2207. doi: 10.1007/BF02671236
      [32]
      D. Mitlin, V. Radmilovic, U. Dahmen, and J.W. Morris, On the influence of Si–Ge additions on the aging response of Al–Cu, Metall. Mater. Trans. A, 34(2003), No. 3, p. 735. doi: 10.1007/s11661-003-0108-y
      [33]
      M.P. Moody, A.V. Ceguerra, A.J. Breen, et al., Atomically resolved tomography to directly inform simulations for structure–property relationships, Nat. Commun., 5(2014), art. No. 5501. doi: 10.1038/ncomms6501
      [34]
      R. Hu, S.B. Jin, and G. Sha, Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis, Prog. Mater. Sci., 123(2022), art. No. 100854. doi: 10.1016/j.pmatsci.2021.100854
      [35]
      S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al–Mg–Si Alloys, Acta Mater., 59(2011), No. 9, p. 3352. doi: 10.1016/j.actamat.2011.02.010
      [36]
      S.Q. Zhu, H.C. Shih, X.Y. Cui, C.Y. Yu, and S.P. Ringer, Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy, Acta Mater., 203(2021), art. No. 116455. doi: 10.1016/j.actamat.2020.10.074
      [37]
      X.Z. Wang, D.D. Zhao, Y.J. Xu, and Y.J. Li, Modelling the spatial evolution of excess vacancies and its influence on age hardening behaviors in multicomponent aluminium alloys, Acta Mater., 264(2024), art. No. 119552. doi: 10.1016/j.actamat.2023.119552
      [38]
      W.W. Sun, Y.M. Zhu, R. Marceau, et al., Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity, Science, 363(2019), No. 6430, p. 972. doi: 10.1126/science.aav7086
      [39]
      S.H. Wu, H.S. Soreide, B. Chen, et al., Freezing solute atoms in nanograined aluminum alloys via high-density vacancies, Nat. Commun., 13(2022), No. 1, art. No. 3495. doi: 10.1038/s41467-022-31222-6
      [40]
      S. Pogatscher, H. Antrekowitsch, M. Werinos, et al., Diffusion on demand to control precipitation aging: Application to Al–Mg–Si alloys, Phys. Rev. Lett., 112(2014), No. 22, art. No. 225701. doi: 10.1103/PhysRevLett.112.225701
      [41]
      R.K.W. Marceau, A. de Vaucorbeil, G. Sha, S.P. Ringer, and W.J. Poole, Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling, Acta Mater., 61(2013), No. 19, p. 7285. doi: 10.1016/j.actamat.2013.08.033
      [42]
      P. Dumitraschkewitz, P.J. Uggowitzer, S.S.A. Gerstl, J.F. Löffler, and S. Pogatscher, Size-dependent diffusion controls natural aging in aluminium alloys, Nat. Commun., 10(2019), No. 1, art. No. 4746. doi: 10.1038/s41467-019-12762-w
      [43]
      W. Xu, B. Zhang, X.Y. Li, and K. Lu, Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al–Mg alloys, Science, 373(2021), No. 6555, p. 683. doi: 10.1126/science.abh0700
      [44]
      W. Xu, Y.M. Zhong, X.Y. Li, and K. Lu, Stabilizing supersaturation with extreme grain refinement in spinodal aluminum alloys, Adv. Mater., (2023), art. No. 2303650.
      [45]
      P.N.T. Unwin, G.W. Lorimer, and R.B. Nicholson, The origin of the grain boundary precipitate free zone, Acta Metall., 17(1969), No. 11, p. 1363. doi: 10.1016/0001-6160(69)90154-0
      [46]
      H. Jiang and R.G. Faulkner, Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys—I. The model, Acta Mater., 44(1996), No. 5, p. 1857. doi: 10.1016/1359-6454(95)00317-7
      [47]
      I.A. Ovid'ko, R.Z. Valiev, and Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci., 94(2018), p. 462. doi: 10.1016/j.pmatsci.2018.02.002
      [48]
      A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893. doi: 10.1016/j.pmatsci.2008.03.002
      [49]
      I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A, 560(2013), p. 1. doi: 10.1016/j.msea.2012.09.020
      [50]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [51]
      M. Namdar and S.A.J. Jahromi, Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 285. doi: 10.1007/s12613-015-1072-4
      [52]
      L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, et al., Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 801. doi: 10.1007/s12613-020-2017-0
      [53]
      L. Jiang, J.K. Li, G. Liu, et al., Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition, Mater. Sci. Eng. A, 637(2015), p. 139. doi: 10.1016/j.msea.2015.04.035
      [54]
      Y. Huang, J.D. Robson, and P.B. Prangnell, The Formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy, Acta Mater., 58(2010), No. 5, p. 1643. doi: 10.1016/j.actamat.2009.11.008
      [55]
      A. Deschamps, F. De Geuser, Z. Horita, S. Lee, and G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Mater., 66(2014), p. 105. doi: 10.1016/j.actamat.2013.11.071
      [56]
      T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, and E.J. Lavernia, Precipitation phenomena in an ultrafine-grained Al alloy, Acta Mater., 61(2013), No. 6, p. 2163. doi: 10.1016/j.actamat.2012.12.037
      [57]
      G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, and T.G. Langdon, Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy, Acta Mater., 57(2009), No. 10, p. 3123. doi: 10.1016/j.actamat.2009.03.017
      [58]
      L. Jiang, J.K. Li, P.M. Cheng, et al., Microalloying ultrafine grained Al alloys with enhanced ductility, Sci. Rep., 4(2014), art. No. 3605. doi: 10.1038/srep03605
      [59]
      J. Røyset and N. Ryum, Scandium in aluminium alloys, Int. Mater. Rev., 50(2005), No. 1, p. 19. doi: 10.1179/174328005X14311
      [60]
      T. Liu, C.N. He, G. Li, X. Meng, C.S. Shi, and N.Q. Zhao, Microstructural evolution in Al–Zn–Mg–Cu–Sc–Zr alloys during short-time homogenization, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 516. doi: 10.1007/s12613-015-1101-3
      [61]
      E.A. Marquis and D.N. Seidman, Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys, Acta Mater., 49(2001), No. 11, p. 1909. doi: 10.1016/S1359-6454(01)00116-1
      [62]
      D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys, Acta Mater., 50(2002), No. 16, p. 4021. doi: 10.1016/S1359-6454(02)00201-X
      [63]
      J. Wadsworth, T.G. Nieh, and J.J. Stephens, Recent advances in aerospace refractory metal alloys, Int. Mater. Rev., 33(1988), No. 1, p. 131. doi: 10.1179/imr.1988.33.1.131
      [64]
      K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, and D.N. Seidman, Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging, Acta Mater., 58(2010), No. 15, p. 5184. doi: 10.1016/j.actamat.2010.05.054
      [65]
      C.B. Fuller, D.N. Seidman, and D.C. Dunand, Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures, Acta Mater., 51(2003), No. 16, p. 4803. doi: 10.1016/S1359-6454(03)00320-3
      [66]
      C. Booth-Morrison, D.C. Dunand, and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater., 59(2011), No. 18, p. 7029. doi: 10.1016/j.actamat.2011.07.057
      [67]
      M.E. van Dalen, D.N. Seidman, and D.C. Dunand, Creep- and coarsening properties of Al–0.06at.% Sc–0.06at.% Ti at 300–450°C, Acta Mater., 56(2008), No. 16, p. 4369. doi: 10.1016/j.actamat.2008.05.002
      [68]
      R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, and H.B. Zhu, Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Mater., 193(2020), p. 83. doi: 10.1016/j.actamat.2020.03.060
      [69]
      Q.B. Jia, P. Rometsch, P. Kürnsteiner, et al., Selective laser melting of a high strength Al–Mn–Sc alloy: Alloy design and strengthening mechanisms, Acta Mater., 171(2019), p. 108. doi: 10.1016/j.actamat.2019.04.014
      [70]
      E.A. Marquis, D.N. Seidman, M. Asta, and C. Woodward, Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: Experiments and computations, Acta Mater., 54(2006), No. 1, p. 119. doi: 10.1016/j.actamat.2005.08.035
      [71]
      E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward, and V. Ozoliņs, Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: Experiments and computations, Phys. Rev. Lett., 91(2003), No. 3, art. No. 036101. doi: 10.1103/PhysRevLett.91.036101
      [72]
      Y. Deng, Z.M. Yin, K. Zhao, J.Q. Duan, J. Hu, and Z.B. He, Effects of Sc and Zr microalloying additions and aging time at 120°C on the corrosion behaviour of an Al–Zn–Mg alloy, Corros. Sci., 65(2012), p. 288. doi: 10.1016/j.corsci.2012.08.024
      [73]
      Y. Deng, R. Ye, G.F. Xu, et al., Corrosion behaviour and mechanism of new aerospace Al–Zn–Mg alloy friction stir welded joints and the effects of secondary Al3Sc x Zr1− x nanoparticles, Corros. Sci., 90(2015), p. 359. doi: 10.1016/j.corsci.2014.10.036
      [74]
      C.Y. Liu, G.B. Teng, Z.Y. Ma, L.L. Wei, B. Zhang, and Y. Chen, Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1559. doi: 10.1007/s12613-019-1840-7
      [75]
      S. Bai, X.L. Yi, G.H. Liu, Z.Y. Liu, J. Wang, and J.G. Zhao, Effect of Sc addition on the microstructures and age-hardening behavior of an Al–Cu–Mg–Ag alloy, Mater. Sci. Eng. A, 756(2019), p. 258. doi: 10.1016/j.msea.2019.04.045
      [76]
      S.Y. Jiang and R.H. Wang, Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1354. doi: 10.1016/j.jmst.2019.03.011
      [77]
      B.A. Chen, L. Pan, R.H. Wang, et al., Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition, Mater. Sci. Eng. A, 530(2011), p. 607. doi: 10.1016/j.msea.2011.10.030
      [78]
      B.A. Chen, G. Liu, R.H. Wang, et al., Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys, Acta Mater., 61(2013), No. 5, p. 1676. doi: 10.1016/j.actamat.2012.11.043
      [79]
      L. Jiang, J.K. Li, P.M. Cheng, et al., Experiment and modeling of ultrafast precipitation in an ultrafine-grained Al–Cu–Sc alloy, Mater. Sci. Eng. A, 607(2014), p. 596. doi: 10.1016/j.msea.2014.04.045
      [80]
      S.H. Wu, P. Zhang, D. Shao, et al., Grain size-dependent Sc microalloying effect on the yield strength–pitting corrosion correlation in Al–Cu alloys, Mater. Sci. Eng. A, 721(2018), p. 200. doi: 10.1016/j.msea.2018.02.089
      [81]
      Y.H. Gao, C. Yang, J.Y. Zhang, et al., Stabilizing nanoprecipitates in Al–Cu alloys for creep resistance at 300°C, Mater. Res. Lett., 7(2019), No. 1, p. 18. doi: 10.1080/21663831.2018.1546773
      [82]
      S. Wu, H. Xue, C. Yang, et al., Hierarchical structure in Al–Cu alloys to promote strength/ductility synergy, Scripta Mater., 202(2021), art. No. 113996. doi: 10.1016/j.scriptamat.2021.113996
      [83]
      J.F. Nie, Physical metallurgy of light alloys, [in] D.E. Laughlin and K. Hono, eds., Physical Metallurgy, 5th ed., Elsevier, Amsterdam, 2014, p. 2009.
      [84]
      J.M. Rosalie and L. Bourgeois, Silver segregation to θ′ (Al2Cu)–Al interfaces in Al–Cu–Ag alloys, Acta Mater., 60(2012), No. 17, p. 6033. doi: 10.1016/j.actamat.2012.07.039
      [85]
      D. Shin, A. Shyam, S. Lee, Y. Yamamoto, and J.A. Haynes, Solute segregation at the Al/θ′-Al2Cu interface in Al–Cu alloys, Acta Mater., 141(2017), p. 327. doi: 10.1016/j.actamat.2017.09.020
      [86]
      Y.H. Zheng, Y.X. Liu, N. Wilson, et al., Solute segregation induced sandwich structure in Al–Cu (–Au) alloys, Acta Mater., 184(2020), p. 17. doi: 10.1016/j.actamat.2019.11.011
      [87]
      J.D. Poplawsky, B.K. Milligan, L.F. Allard, et al., The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al–Cu alloys, Acta Mater., 194(2020), p. 577. doi: 10.1016/j.actamat.2020.05.043
      [88]
      A.F. Norman, P.B. Prangnell, and R.S. McEwen, The solidification behaviour of dilute aluminium–scandium alloys, Acta Mater., 46(1998), No. 16, p. 5715. doi: 10.1016/S1359-6454(98)00257-2
      [89]
      M.J. Jones and F.J. Humphreys, Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium, Acta Mater., 51(2003), No. 8, p. 2149. doi: 10.1016/S1359-6454(03)00002-8
      [90]
      M. Ferry and N. Burhan, Structural and kinetic aspects of continuous grain coarsening in a fine-grained Al–0.3Sc alloy, Acta Mater., 55(2007), No. 10, p. 3479. doi: 10.1016/j.actamat.2007.01.047
      [91]
      J.D.C. Teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, A.J. Hill, and C.R. Hutchinson, On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates, Acta Mater., 56(2008), No. 20, p. 6109. doi: 10.1016/j.actamat.2008.08.023
      [92]
      L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, and B.C. Muddle, Structure and energetics of the coherent interface between the θ′ precipitate phase and aluminium in Al–Cu, Acta Mater., 59(2011), No. 18, p. 7043. doi: 10.1016/j.actamat.2011.07.059
      [93]
      L. Bourgeois, N.V. Medhekar, A.E. Smith, M. Weyland, J.F. Nie, and C. Dwyer, Efficient atomic-scale kinetics through a complex heterophase interface, Phys. Rev. Lett., 111(2013), No. 4, art. No. 046102. doi: 10.1103/PhysRevLett.111.046102
      [94]
      C. Yang, P. Zhang, D. Shao, et al., The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al–Cu alloys with minor Sc addition, Acta Mater., 119(2016), p. 68. doi: 10.1016/j.actamat.2016.08.013
      [95]
      D.L. Zhang, J. Wang, Y. Kong, Y. Zou, and Y. Du, First-principles investigation on stability and electronic structure of Sc-doped θ′/Al interface in Al–Cu alloys, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3342. doi: 10.1016/S1003-6326(21)65733-3
      [96]
      K.E. Knipling, D.C. Dunand, and D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys - A review, Int. J. Mater. Res., 97(2006), No. 3, p. 246. doi: 10.1515/ijmr-2006-0042
      [97]
      S. Jun, Strength for decohesion of spheroidal carbide particle–matrix interface, Int. J. Fract., 44(1990), No. 4, p. R51. doi: 10.1007/BF00036174
      [98]
      S.H. Goods and L.M. Brown, Overview No. 1: The nucleation of cavities by plastic deformation, Acta Metall., 27(1979), No. 1, p. 1. doi: 10.1016/0001-6160(79)90051-8
      [99]
      L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations, Philos. Mag., 34(1976), No. 3, p. 351. doi: 10.1080/14786437608222028
      [100]
      T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy, Acta Mater., 58(2010), No. 14, p. 4814. doi: 10.1016/j.actamat.2010.05.017
      [101]
      C.R. Hutchinson, X. Fan, S.J. Pennycook, and G.J. Shiflet, On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys, Acta Mater., 49(2001), No. 14, p. 2827. doi: 10.1016/S1359-6454(01)00155-0
      [102]
      Y.H. Gao, P.F. Guan, R. Su, et al., Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance, Mater. Res. Lett., 8(2020), No. 12, p. 446. doi: 10.1080/21663831.2020.1799447
      [103]
      A. Shyam, S. Roy, D. Shin, et al., Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation, Mater. Sci. Eng. A, 765(2019), art. No. 138279. doi: 10.1016/j.msea.2019.138279
      [104]
      Y.H. Gao, L.F. Cao, C. Yang, J.Y. Zhang, G. Liu, and J. Sun, Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al–Cu alloy with enhanced creep resistance, Mater. Today Nano, 6(2019), art. No. 100035. doi: 10.1016/j.mtnano.2019.100035
      [105]
      Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging, Mater. Sci. Eng. A, 795(2020), art. No. 139943. doi: 10.1016/j.msea.2020.139943
      [106]
      R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater., 3(2004), No. 8, p. 511. doi: 10.1038/nmat1180
      [107]
      R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45(2000), No. 2, p. 103. doi: 10.1016/S0079-6425(99)00007-9
      [108]
      Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61(2013), No. 3, p. 782. doi: 10.1016/j.actamat.2012.10.038
      [109]
      A.A. Tiamiyu, E.L. Pang, X. Chen, J.M. LeBeau, K.A. Nelson, and C.A. Schuh, Nanotwinning-assisted dynamic recrystallization at high strains and strain rates, Nat. Mater., 21(2022), No. 7, p. 786. doi: 10.1038/s41563-022-01250-0
      [110]
      K.S. Ghosh, N. Gao, and M.J. Starink, Characterisation of high pressure torsion processed 7150 Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 552(2012), p. 164. doi: 10.1016/j.msea.2012.05.026
      [111]
      J.G. Brunner, J. May, H.W. Höppel, M. Göken, and S. Virtanen, Localized corrosion of ultrafine-grained Al–Mg model alloys, Electrochim. Acta, 55(2010), No. 6, p. 1966. doi: 10.1016/j.electacta.2009.11.016
      [112]
      E.F. Prados, V.L. Sordi, and M. Ferrante, The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behaviour of a Al–4wt.% Cu alloy processed by equal-channel angular pressing, Acta Mater., 61(2013), No. 1, p. 115. doi: 10.1016/j.actamat.2012.09.038
      [113]
      M. Murayama, Z. Horita, and K. Hono, Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing, Acta Mater., 49(2001), No. 1, p. 21. doi: 10.1016/S1359-6454(00)00308-6
      [114]
      H.L. Jia, R. Bjørge, L.F. Cao, H. Song, K. Marthinsen, and Y.J. Li, Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al–5Cu alloy, Acta Mater., 155(2018), p. 199. doi: 10.1016/j.actamat.2018.05.075
      [115]
      K. Hockauf, L.W. Meyer, M. Hockauf, and T. Halle, Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment, J. Mater. Sci., 45(2010), No. 17, p. 4754. doi: 10.1007/s10853-010-4544-y
      [116]
      C. Wolverton, Solute–vacancy binding in aluminum, Acta Mater., 55(2007), No. 17, p. 5867. doi: 10.1016/j.actamat.2007.06.039
      [117]
      J. Peng, S. Bahl, A. Shyam, J.A. Haynes, and D. Shin, Solute–vacancy clustering in aluminum, Acta Mater., 196(2020), p. 747. doi: 10.1016/j.actamat.2020.06.062
      [118]
      S.K. Kairy, P.A. Rometsch, K. Diao, J.F. Nie, C.H.J. Davies, and N. Birbilis, Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure, Electrochim. Acta, 190(2016), p. 92. doi: 10.1016/j.electacta.2015.12.098
      [119]
      K.D. Ralston, N. Birbilis, M. Weyland, and C.R. Hutchinson, The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu–Mg alloys, Acta Mater., 58(2010), No. 18, p. 5941. doi: 10.1016/j.actamat.2010.07.010
      [120]
      M.F. Ashby, Overview No. 80: On the engineering properties of materials, Acta Metall., 37(1989), No. 5, p. 1273. doi: 10.1016/0001-6160(89)90158-2
      [121]
      E. Ma and T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Mater. Today, 20(2017), No. 6, p. 323. doi: 10.1016/j.mattod.2017.02.003
      [122]
      Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 419(2002), No. 6910, p. 912. doi: 10.1038/nature01133
      [123]
      M. Zha, Y.J. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven, Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing, Acta Mater., 84(2015), p. 42. doi: 10.1016/j.actamat.2014.10.025
      [124]
      Y. Huang and T.G. Langdon, Advances in ultrafine-grained materials, Mater. Today, 16(2013), No. 3, p. 85. doi: 10.1016/j.mattod.2013.03.004
      [125]
      G. Sha, K. Tugcu, X.Z. Liao, et al., Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion, Acta Mater., 63(2014), p. 169. doi: 10.1016/j.actamat.2013.10.022
      [126]
      Y.D. Zhang, S.B. Jin, P.W. Trimby, et al., Dynamic precipitation, segregation and strengthening of an Al–Zn–Mg–Cu alloy (AA7075) processed by high-pressure torsion, Acta Mater., 162(2019), p. 19. doi: 10.1016/j.actamat.2018.09.060
      [127]
      Z.Z. Song, R.M. Niu, X.Y. Cui, et al., Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al–Zn alloy, Scripta Mater., 210(2022), art. No. 114423. doi: 10.1016/j.scriptamat.2021.114423
      [128]
      Z.Z. Song, R.M. Niu, X.Y. Cui, et al., Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys, Acta Mater., 246(2023), art. No. 118671. doi: 10.1016/j.actamat.2023.118671
      [129]
      A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, and K. Edalati, Developing age-hardenable Al–Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity, Acta Mater., 203(2021), art. No. 116503. doi: 10.1016/j.actamat.2020.116503
      [130]
      W. Xu, X.C. Liu, and K. Lu, Strain-induced microstructure refinement in pure Al below 100 nm in size, Acta Mater., 152(2018), p. 138. doi: 10.1016/j.actamat.2018.04.014
      [131]
      X.Y. Li, Z.H. Jin, X. Zhou, and K. Lu, Constrained minimal-interface structures in polycrystalline copper with extremely fine grains, Science, 370(2020), No. 6518, p. 831. doi: 10.1126/science.abe1267
      [132]
      W. Xu, X.C. Liu, X.Y. Li, and K. Lu, Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy, Acta Mater., 182(2020), p. 207. doi: 10.1016/j.actamat.2019.10.036
      [133]
      L.H. Su, C. Lu, L.Z. He, et al., Study of vacancy-type defects by positron annihilation in ultrafine-grained aluminum severely deformed at room and cryogenic temperatures, Acta Mater., 60(2012), No. 10, p. 4218. doi: 10.1016/j.actamat.2012.04.003
      [134]
      J. Čížek, I. Procházka, M. Cieslar, et al., Thermal stability of ultrafine grained copper, Phys. Rev. B, 65(2002), No. 9, art. No. 094106. doi: 10.1103/PhysRevB.65.094106
      [135]
      X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, Acta Mater., 72(2014), p. 125. doi: 10.1016/j.actamat.2014.03.033
      [136]
      F.D. Fischer, J. Svoboda, F. Appel, and E. Kozeschnik, Modeling of excess vacancy annihilation at different types of sinks, Acta Mater., 59(2011), No. 9, p. 3463. doi: 10.1016/j.actamat.2011.02.020
      [137]
      J.Y. Zhang, S. Lei, Y. Liu, et al., Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars, Acta Mater., 60(2012), p. 1610. doi: 10.1016/j.actamat.2011.12.001
      [138]
      L.P. Kubin and Y. Estrin, Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect, Acta Metall. Mater., 38(1990), No. 5, p. 697. doi: 10.1016/0956-7151(90)90021-8
      [139]
      L.P. Kubin and Y. Estrin, The critical conditions for jerky flow. Discussion and application to CuMn solid solutions, Phys. Status Solidi B, 172(1992), No. 1, p. 173. doi: 10.1002/pssb.2221720117
      [140]
      X.F. Chen, Q. Wang, Z.Y. Cheng, et al., Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592(2021), No. 7856, p. 712. doi: 10.1038/s41586-021-03428-z
      [141]
      D. Häussler, M. Bartsch, U. Messerschmidt, and B. Reppich, HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754, Acta Mater., 49(2001), No. 18, p. 3647. doi: 10.1016/S1359-6454(01)00285-3
      [142]
      J. Mola, G.Q. Luan, Q.L. Huang, C. Ullrich, O. Volkova, and Y. Estrin, Dynamic strain aging mechanisms in a metastable austenitic stainless steel, Acta Mater., 212(2021), art. No. 116888. doi: 10.1016/j.actamat.2021.116888
      [143]
      R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
      [144]
      S.H. Jiang, H. Wang, Y. Wu, et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature, 544(2017), No. 7651, p. 460. doi: 10.1038/nature22032
      [145]
      J.L. Du, S.H. Jiang, P.P. Cao, et al., Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices, Nat. Mater., 22(2023), No. 4, p. 442. doi: 10.1038/s41563-022-01260-y

    Catalog


    • /

      返回文章
      返回