留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  323
  • HTML全文浏览量:  125
  • PDF下载量:  16
  • 被引次数: 0
Panpan Che, Baoshan Xie, Penghui Cao, Youfu Lv, Daifei Liu, Huali Zhu, Xianwen Wu, Zhangxing He, Jian Chen,  and Chuanchang Li, Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1945-1964. https://doi.org/10.1007/s12613-024-2842-7
Cite this article as:
Panpan Che, Baoshan Xie, Penghui Cao, Youfu Lv, Daifei Liu, Huali Zhu, Xianwen Wu, Zhangxing He, Jian Chen,  and Chuanchang Li, Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1945-1964. https://doi.org/10.1007/s12613-024-2842-7
引用本文 PDF XML SpringerLink
特约综述

静电纺丝–热压技术制备储热与储电薄膜及其应用


  • 通讯作者:

    李传常    E-mail: chuanchangli@csust.edu.cn

文章亮点

  • (1) 系统地阐述了复合薄膜的储热和储电机理。
  • (2) 回顾并展望了复合薄膜在储热领域的应用。
  • (3) 介绍并总结了复合薄膜在储电方面的应用。
  • 静电纺丝与热压技术(EHPT)的结合是制备具有良好储能性能的纳米纤维复合材料的一种高效便捷的方法。EHPT 法制备的复合薄膜因其具有比表面积大、形貌可控、结构紧凑等优点而受到广泛关注。本文系统地探讨了复合薄膜在热能和电能存储中的相关机理,以及其基于 EHPT 制备工艺的性能增强方法。介绍了复合薄膜在储热和储电两个领域的最新应用。在储热领域,EHPT 制备的复合薄膜因其纵横交错的纳米纤维而产生独特的热传导途径;同时,这些纳米纤维为填充功能材料提供了足够的空间。此外,静电纺丝–热压技术制备的复合薄膜在电容器、锂离子电池(LIBs)、燃料电池、钠离子电池(SIBs)和氢溴液流电池(HBFBs)中广泛应用。未来,EHPT 将通过自身的技术突破或与其他技术相结合来生产智能材料以扩展其应用领域。
  • Invited Review

    Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications

    + Author Affiliations
    • The combination of electrospinning and hot pressing, namely the electrospinning-hot pressing technique (EHPT), is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance. The emerging composite membrane prepared by EHPT, which exhibits the advantages of large surface area, controllable morphology, and compact structure, has attracted immense attention. In this paper, the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed. Moreover, the state-of-the-art applications of composite membranes in these two fields are introduced. In particular, in the field of thermal energy storage, EHPT-prepared membranes have longitudinal and transverse nanofibers, which generate unique thermal conductivity pathways; also, these nanofibers offer enough space for the filling of functional materials. Moreover, EHPT-prepared membranes are beneficial in thermal management systems, building energy conservation, and electrical energy storage, e.g., improving the electrochemical properties of the separators as well as their mechanical and thermal stability. The application of electrospinning-hot pressing membranes on capacitors, lithium-ion batteries (LIBs), fuel cells, sodium-ion batteries (SIBs), and hydrogen bromine flow batteries (HBFBs) still requires examination. In the future, EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
    • loading
    • [1]
      S. Boadu and E. Otoo, A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations, Renewable Sustainable Energy Rev., 191(2024), art. No. 114035. doi: 10.1016/j.rser.2023.114035
      [2]
      Q.Y. Zhang, X.Q. Mao, J.H. Lu, et al., EU-Russia energy decoupling in combination with the updated NDCs impacts on global fossil energy trade and carbon emissions, Appl. Energy, 356(2024), art. No. 122415. doi: 10.1016/j.apenergy.2023.122415
      [3]
      Y.T. Zhou, Z.J. Ma, X.Y. Shi, and S.L. Zou, Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint, Energy, 288(2024), art. No. 129732. doi: 10.1016/j.energy.2023.129732
      [4]
      Y.S. Zhang, C. Ma, Y. Yang, X.L. Pang, J.J. Lian, and X. Wang, Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind, Energy, 259(2022), art. No. 125012. doi: 10.1016/j.energy.2022.125012
      [5]
      T. Capurso, M. Stefanizzi, M. Torresi, and S.M. Camporeale, Perspective of the role of hydrogen in the 21st century energy transition, Energy Convers. Manage., 251(2022), art. No. 114898. doi: 10.1016/j.enconman.2021.114898
      [6]
      J.J. Zhang, B. Zhang, X.B. Xie, et al., Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 14. doi: 10.1007/s12613-022-2519-z
      [7]
      J.Y. Hu, G.F. Yang, Z.O. Song, and C.Q. Kang, Preliminary discussion on the supporting policies and the China’s development model of the new energy storage, Power Syst. Technol., 48(2024), No. 2, p. 469.
      [8]
      B. Yilmaz, B. Yüksel, G. Orhan, D. Aydin, and Z. Utlu, Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 112. doi: 10.1007/s12613-019-1890-x
      [9]
      Y. Chen, K.L. Zhang, N. Li, et al., Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 33. doi: 10.1007/s12613-022-2416-5
      [10]
      J. Giro-Paloma, M. Martínez, L.F. Cabeza, and A.I. Fernández, Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review, Renewable Sustainable Energy Rev., 53(2016), p. 1059. doi: 10.1016/j.rser.2015.09.040
      [11]
      J. Jyoti, T.K. Gupta, B.P. Singh, M. Sandhu, and S.K. Tripathi, Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications, J. Energy Storage, 50(2022), art. No. 104235. doi: 10.1016/j.est.2022.104235
      [12]
      R. Cheng, Y.F. Wang, R.J. Men, et al., High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage, iScience, 25(2022), No. 8, art. No. 104837. doi: 10.1016/j.isci.2022.104837
      [13]
      G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. Lond. A, 280(1964), No. 1382, p. 383. doi: 10.1098/rspa.1964.0151
      [14]
      T.D. Brown, P.D. Dalton, and D.W. Hutmacher, Melt electrospinning today: An opportune time for an emerging polymer process, Prog. Polym. Sci., 56(2016), p. 116. doi: 10.1016/j.progpolymsci.2016.01.001
      [15]
      B.S. Isik, F. Altay, and E. Capanoglu, The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility, Food Chem., 265(2018), p. 260. doi: 10.1016/j.foodchem.2018.05.064
      [16]
      M.J. Chen, Y.C. Zhang, H.Y. Li, et al., An example of industrialization of melt electrospinning: Polymer melt differential electrospinning, Adv. Ind. Eng. Polym. Res., 2(2019), No. 3, p. 110.
      [17]
      M. Karim, M. Fathi, and S. Soleimanian-Zad, Incorporation of zein nanofibers produced by needle-less electrospinning within the casted gelatin film for improvement of its physical properties, Food Bioprod. Process., 122(2020), p. 193. doi: 10.1016/j.fbp.2020.04.006
      [18]
      X.X. Wang, G.F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y.Z. Long, Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications, Prog. Mater. Sci., 115(2021), art. No. 100704. doi: 10.1016/j.pmatsci.2020.100704
      [19]
      C. Zhang, X.R. Wang, A.H. Liu, C.J. Pan, H.Y. Ding, and W. Ye, Reduced graphene oxide/titanium dioxide hybrid nanofiller-reinforced electrospun silk fibroin scaffolds for tissue engineering, Mater. Lett., 291(2021), art. No. 129563. doi: 10.1016/j.matlet.2021.129563
      [20]
      S. Yadav, M.D.R. Kok, A. Forner-Cuenca, et al., Fabrication of high surface area ribbon electrodes for use in redox flow batteries via coaxial electrospinning, J. Energy Storage, 33(2021), art. No. 102079. doi: 10.1016/j.est.2020.102079
      [21]
      W. Yang, Y.Q. Zhan, Q.Y. Feng, A. Sun, and H.Y. Dong, Flexible h-BN/fluorinated poly (arylene ether nitrile) fibrous composite film with low dielectric constant and high thermal conductivity fabricated via coaxial electrospinning hot-pressing technique, Colloids Surf. A, 649(2022), art. No. 129455. doi: 10.1016/j.colsurfa.2022.129455
      [22]
      J. Chen, X.Y. Huang, B. Sun, and P.K. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability, ACS Nano, 13(2019), No. 1, p. 337. doi: 10.1021/acsnano.8b06290
      [23]
      N. Shen, S. Chen, R.Q. Huang, et al., Vanadium dioxide for thermochromic smart windows in ambient conditions, Mater. Today Energy, 21(2021), art. No. 100827. doi: 10.1016/j.mtener.2021.100827
      [24]
      S. Byun, S.H. Lee, D. Song, M.H. Ryou, Y.M. Lee, and W.H. Park, A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries, J. Ind. Eng. Chem., 72(2019), p. 390. doi: 10.1016/j.jiec.2018.12.041
      [25]
      J. Wang, S. Liang, J. Xiong, et al., High energy density nanocomposites with layered gradient structure and lysozyme-modified Ba0.6Sr0.4TiO3 nanoparticles, Composites Part A, 163(2022), art. No. 107254. doi: 10.1016/j.compositesa.2022.107254
      [26]
      M. Bognitzki, W. Czado, T. Frese, et al., Nanostructured fibers via electrospinning, Adv. Mater., 13(2001), No. 1, p. 70. doi: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
      [27]
      Y.C. Ding, Q. Wu, D. Zhao, W. Ye, M. Hanif, and H.Q. Hou, Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying, Eur. Polym. J., 49(2013), No. 9, p. 2567. doi: 10.1016/j.eurpolymj.2013.05.016
      [28]
      R.B. Yilmaz, G. Bayram, and U. Yilmazer, Effect of halloysite nanotubes on multifunctional properties of coaxially electrospun poly(ethylene glycol)/polyamide-6 nanofibrous thermal energy storage materials, Thermochim. Acta, 690(2020), art. No. 178673. doi: 10.1016/j.tca.2020.178673
      [29]
      F. Naseri, S. Karimi, E. Farjah, and E. Schaltz, Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques, Renewable Sustainable Energy Rev., 155(2022), art. No. 111913. doi: 10.1016/j.rser.2021.111913
      [30]
      Y. Xiao, F.Q. Yang, Z.H. Gao, et al., Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales, J. Energy Storage, 64(2023), art. No. 107145. doi: 10.1016/j.est.2023.107145
      [31]
      M.L. He, R. Davis, D. Chartouni, et al., Assessment of the first commercial Prussian blue based sodium-ion battery, J. Power Sources, 548(2022), art. No. 232036. doi: 10.1016/j.jpowsour.2022.232036
      [32]
      N. Singh and E.W. McFarland, Levelized cost of energy and sensitivity analysis for the hydrogen–bromine flow battery, J. Power Sources, 288(2015), p. 187. doi: 10.1016/j.jpowsour.2015.04.114
      [33]
      A. Al-Othman, M. Tawalbeh, R. Martis, et al., Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects, Energy Convers. Manage., 253(2022), art. No. 115154. doi: 10.1016/j.enconman.2021.115154
      [34]
      C.C. Li, W.X. Wang, X.L. Zeng, C.X. Liu, and R. Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 772. doi: 10.1007/s12613-022-2565-6
      [35]
      Z.X. Zhong, M.C. Wingert, J. Strzalka, et al., Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers, Nanoscale, 6(2014), No. 14, p. 8283. doi: 10.1039/C4NR00547C
      [36]
      H.L. Liu, X.Y. Liu, J.Y. Yu, Y.T. Liu, and B. Ding, Recent progress in electrospun Al2O3 nanofibers: Component design, structure regulation and performance optimization, Appl. Mater. Today, 29(2022), art. No. 101675. doi: 10.1016/j.apmt.2022.101675
      [37]
      L. Yang, L. Zhang, and C.Z. Li, Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites, Compos. Sci. Technol., 200(2020), art. No. 108429. doi: 10.1016/j.compscitech.2020.108429
      [38]
      D.L. Zhang, J.W. Zha, W.K. Li, et al., Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning, Compos. Sci. Technol., 156(2018), p. 1. doi: 10.1016/j.compscitech.2017.12.008
      [39]
      Z.Q. Wei, X.D. Kong, J.Z. Cheng, H. Zhou, J.H. Yu, and S.R. Lu, Constructing a “Pearl-Necklace-Like” architecture for enhancing thermal conductivity of composite films by electrospinning, Compos. Commun., 29(2022), art. No. 101036. doi: 10.1016/j.coco.2021.101036
      [40]
      F. Haghighat, S.A.H. Ravandi, M.N. Esfahany, A. Valipouri, and Z. Zarezade, Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions, Appl. Therm. Eng., 161(2019), art. No. 113924. doi: 10.1016/j.applthermaleng.2019.113924
      [41]
      C.C. Li, X.K. Peng, J.J. He, and J. Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1835. doi: 10.1007/s12613-023-2627-4
      [42]
      D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
      [43]
      Y.H. Guo, Y.W. Chen, E.M. Wang, and M. Cakmak, Roll-to-roll continuous manufacturing multifunctional nanocomposites by electric-field-assisted “Z” direction alignment of graphite flakes in poly(dimethylsiloxane), ACS Appl. Mater. Interfaces, 9(2017), No. 1, p. 919. doi: 10.1021/acsami.6b13207
      [44]
      J.W. Gu, Z.Y. Lv, Y.L. Wu, et al., Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in situ polymerization-electrospinning-hot press method, Composites Part A, 94(2017), p. 209. doi: 10.1016/j.compositesa.2016.12.014
      [45]
      B. Zhang, F.Y. Kang, J.M. Tarascon, and J.K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Prog. Mater. Sci., 76(2016), p. 319. doi: 10.1016/j.pmatsci.2015.08.002
      [46]
      S. Wang, H.T. Shi, Y.H. Xia, et al., Electrospun-based nanofibers for sodium and potassium ion storage: Structure design for alkali metal ions with large radius, J. Alloys Compd., 918(2022), art. No. 165680. doi: 10.1016/j.jallcom.2022.165680
      [47]
      S.K. Zhang, Z.G. Xu, H.H. Duan, et al., N-doped carbon nanofibers with internal cross-linked multiple pores for both ultra-long cycling life and high capacity in highly durable K-ion battery anodes, Electrochim. Acta, 337(2020), art. No. 135767. doi: 10.1016/j.electacta.2020.135767
      [48]
      H.X. Han, X.Y. Chen, J.F. Qian, et al., Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries, Nanoscale, 11(2019), No. 45, p. 21999. doi: 10.1039/C9NR07675A
      [49]
      Q.T. Jiang, X. Pang, S.T. Geng, et al., Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance, Appl. Surf. Sci., 479(2019), p. 128. doi: 10.1016/j.apsusc.2019.02.077
      [50]
      J.X. Wu, X.Y. Qin, C. Miao, et al., A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes, Carbon, 98(2016), p. 582. doi: 10.1016/j.carbon.2015.11.048
      [51]
      B. Lin, Z.T. Li, Y. Yang, et al., Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method, Compos. Sci. Technol., 172(2019), p. 58. doi: 10.1016/j.compscitech.2019.01.003
      [52]
      K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, et al., Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation, J. Polym. Res., 24(2017), No. 2, art. No. 27. doi: 10.1007/s10965-017-1189-4
      [53]
      X.X. Guo, S.J. Cheng, W.W. Cai, Y.F. Zhang, and X.A. Zhang, A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties, Mater. Des., 209(2021), art. No. 109936. doi: 10.1016/j.matdes.2021.109936
      [54]
      P.P. Wang, G.Q. Chen, W.J. Li, et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
      [55]
      J. Khan, S.A. Momin, and M. Mariatti, A review on advanced carbon-based thermal interface materials for electronic devices, Carbon, 168(2020), p. 65. doi: 10.1016/j.carbon.2020.06.012
      [56]
      Y.Q. Guo, G.J. Xu, X.T. Yang, et al., Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology, J. Mater. Chem. C, 6(2018), No. 12, p. 3004. doi: 10.1039/C8TC00452H
      [57]
      K.P. Ruan, Y.Q. Guo, Y.S. Tang, et al., Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique, Compos. Commun., 10(2018), p. 68. doi: 10.1016/j.coco.2018.07.003
      [58]
      Z.Z. Yuan, W. Chen, Y.K. Shi, et al., Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide, New Carbon Mater., 36(2021), No. 5, p. 940. doi: 10.1016/S1872-5805(21)60077-X
      [59]
      Y.Q. Guo, L.L. Pan, X.T. Yang, et al., Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology, Composites Part A, 124(2019), art. No. 105484. doi: 10.1016/j.compositesa.2019.105484
      [60]
      N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch, Review of thermal conductivity in composites: Mechanisms, parameters and theory, Prog. Polym. Sci., 61(2016), p. 1. doi: 10.1016/j.progpolymsci.2016.05.001
      [61]
      Y.Q. Guo, X.T. Yang, K.P. Ruan, et al., Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites, ACS Appl. Mater. Interfaces, 11(2019), No. 28, p. 25465. doi: 10.1021/acsami.9b10161
      [62]
      Y.Q. Guo, K.P. Ruan, X.T. Yang, et al., Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites, J. Mater. Chem. C, 7(2019), No. 23, p. 7035. doi: 10.1039/C9TC01804B
      [63]
      K.K. Yuan, H. Li, X.T. Jin, et al., Electrospun flexible calcium zirconate fiber membrane with excellent thermal stability and alkali resistance, Ceram. Int., 48(2022), No. 9, p. 12408. doi: 10.1016/j.ceramint.2022.01.105
      [64]
      X.W. Yin, L.F. Cheng, L.T. Zhang, N. Travitzky, and P. Greil, Fibre-reinforced multifunctional SiC matrix composite materials, Int. Mater. Rev., 62(2017), No. 3, p. 117. doi: 10.1080/09506608.2016.1213939
      [65]
      A.R. Selvaraj, I.S. Raja, D. Chinnadurai, et al., Electrospun One Dimensional (1D) Pseudocapacitive nanorods embedded carbon nanofiber as positrode and graphene wrapped carbon nanofiber as negatrode for enhanced electrochemical energy storage, J. Energy Storage, 46(2022), art. No. 103731. doi: 10.1016/j.est.2021.103731
      [66]
      X. Liu, C.M. Wang, Z.Y. Cai, Z.J. Hu, and P. Zhu, Fabrication and characterization of polyacrylonitrile and polyethylene glycol composite nanofibers by electrospinning, J. Energy Storage, 53(2022), art. No. 105171. doi: 10.1016/j.est.2022.105171
      [67]
      Z. Lule and J. Kim, Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride, Composites Part A, 124(2019), art. No. 105506. doi: 10.1016/j.compositesa.2019.105506
      [68]
      J.W. You, H.H. Choi, Y.M. Lee, et al., Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties, Composites Part B, 164(2019), p. 710. doi: 10.1016/j.compositesb.2019.01.100
      [69]
      X.L. Hu, M. Huang, N.Z. Kong, F. Han, R.X. Tan, and Q.Z. Huang, Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by SiC ceramic coating for efficient thermal interface materials, Composites Part B, 227(2021), art. No. 109398. doi: 10.1016/j.compositesb.2021.109398
      [70]
      J.W. Gu, Z.Y. Lv, Y.L. Wu, R.X. Zhao, L.D. Tian, and Q.Y. Zhang, Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique, Composites Part A, 79(2015), p. 8. doi: 10.1016/j.compositesa.2015.09.005
      [71]
      V. Guerra, C.Y. Wan, and T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers, Prog. Mater. Sci., 100(2019), p. 170. doi: 10.1016/j.pmatsci.2018.10.002
      [72]
      Z.Y. Lin, A. McNamara, Y. Liu, K.S. Moon, and C.P. Wong, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation, Compos. Sci. Technol., 90(2014), p. 123. doi: 10.1016/j.compscitech.2013.10.018
      [73]
      C.W. Chang, W.Q. Han, and A. Zettl, Thermal conductivity of B–C–N and BN nanotubes, J. Vac. Sci. Technol. B, 23(2005), No. 5, p. 1883. doi: 10.1116/1.2008266
      [74]
      X.J. Liu and Z.H. Rao, Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials, J. Energy Storage, 32(2020), art. No. 101860. doi: 10.1016/j.est.2020.101860
      [75]
      X.T. Yang, Y.Q. Guo, Y.X. Han, et al., Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology, Composites Part B, 175(2019), art. No. 107070. doi: 10.1016/j.compositesb.2019.107070
      [76]
      K. Zhao, S.Y. Wei, M. Cao, et al., Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network, Compos. Sci. Technol., 245(2024), art. No. 110323. doi: 10.1016/j.compscitech.2023.110323
      [77]
      Y. Zhang, Z.H. Zhao, M.H. Chen, H. Wu, S.Y. Guo, and J.H. Qiu, Constructing interconnected network of MWCNT and BNNS in electrospun TPU films: Achieving excellent thermal conduction yet electrical insulation properties, Carbon, 218(2024), art. No. 118691. doi: 10.1016/j.carbon.2023.118691
      [78]
      J. Chen, H. Wei, H. Bao, P.K. Jiang, and X.Y. Huang, Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications, ACS Appl. Mater. Interfaces, 11(2019), No. 34, p. 31402. doi: 10.1021/acsami.9b10810
      [79]
      G. Yang, X.D. Zhang, Y. Shang, et al., Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets, Compos. Sci. Technol., 201(2021), art. No. 108521. doi: 10.1016/j.compscitech.2020.108521
      [80]
      H. Wang, Y. Zhang, H.T. Niu, et al., An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films, Composites Part B, 230(2022), art. No. 109505. doi: 10.1016/j.compositesb.2021.109505
      [81]
      B.K. Yu, J. Fan, J.X. He, et al., Boron nitride nanosheets: Large-scale exfoliation in NaOH–LiCl solution and their highly thermoconductive insulating nanocomposite paper with PI via electrospinning-electrospraying, J. Alloys Compd., 930(2023), art. No. 167303. doi: 10.1016/j.jallcom.2022.167303
      [82]
      Y.Y. Cui, Y.J. Ke, C. Liu, et al., Thermochromic VO2 for energy-efficient smart windows, Joule, 2(2018), No. 9, p. 1707. doi: 10.1016/j.joule.2018.06.018
      [83]
      Y.J. Ke, J.W. Chen, G.J. Lin, et al., Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond, Adv. Energy Mater., 9(2019), No. 39, art. No. 1902066. doi: 10.1002/aenm.201902066
      [84]
      S.F. Wang, M.S. Liu, L.B. Kong, Y. Long, X.C. Jiang, and A.B. Yu, Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties, Prog. Mater. Sci., 81(2016), p. 1. doi: 10.1016/j.pmatsci.2016.03.001
      [85]
      Y. Lu, X.D. Xiao, Z.Y. Cao, Y.J. Zhan, H.L. Cheng, and G. Xu, Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique, Appl. Surf. Sci., 425(2017), p. 233. doi: 10.1016/j.apsusc.2017.07.035
      [86]
      Y. Lu, X.D. Xiao, Y.J. Zhan, et al., Functional transparent nanocomposite film with thermochromic and hydrophobic properties fabricated by electrospinning and hot-pressing approach, Ceram. Int., 44(2018), No. 1, p. 1013. doi: 10.1016/j.ceramint.2017.10.037
      [87]
      P.P. Che, C.C. Li, B.S. Xie, and N. Wang, Transparent thermochromic VO2/PAN nanocomposite films prepared by electrospinning-hot pressing technique, Therm. Sci. Eng. Prog., 47(2024), art. No. 102334. doi: 10.1016/j.tsep.2023.102334
      [88]
      H. Qi, A.W. Xie, and R.Z. Zuo, Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: A review, Energy Storage Mater., 45(2022), p. 541. doi: 10.1016/j.ensm.2021.11.043
      [89]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2T x with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [90]
      Z.X. Liu, Y.Y. Gu, and L. Bi, Applications of electrospun nanofibers in solid oxide fuel cells–A review, J. Alloys Compd., 937(2023), art. No. 168288. doi: 10.1016/j.jallcom.2022.168288
      [91]
      J. Hu, S.F. Zhang, and B.T. Tang, Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning, Energy Storage Mater., 37(2021), p. 530. doi: 10.1016/j.ensm.2021.02.035
      [92]
      W.H. Xu, Y.C. Ding, S.H. Jiang, et al., Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning, Eur. Polym. J., 59(2014), p. 129. doi: 10.1016/j.eurpolymj.2014.07.028
      [93]
      Y.L. Shen, L.L. Chen, S.H. Jiang, Y.C. Ding, W.H. Xu, and H.Q. Hou, Electrospun nanofiber reinforced all-organic PVDF/PI tough composites and their dielectric permittivity, Mater. Lett., 160(2015), p. 515. doi: 10.1016/j.matlet.2015.08.019
      [94]
      L. Yang, Q.Y. Zhao, K.N. Chen, et al., Simultaneously realizing ultra-high energy density and discharge efficiency in PVDF composites loaded with highly aligned hollow MnO2 microspheres, Composites Part A, 132(2020), art. No. 105820. doi: 10.1016/j.compositesa.2020.105820
      [95]
      Y. Yang, J.J. Chen, Y. Li, et al., Preparation and dielectric properties of composites based on PVDF and PVDF-grafted graphene obtained from electrospinning-hot pressing method, J. Macromol. Sci. Part A, 55(2018), No. 2, p. 148. doi: 10.1080/10601325.2017.1400392
      [96]
      W.H. Xu, Y.C. Ding, S.H. Jiang, L.L. Chen, X.J. Liao, and H.Q. Hou, Polyimide/BaTiO3/MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties, Mater. Lett., 135(2014), p. 158. doi: 10.1016/j.matlet.2014.07.157
      [97]
      Y. Shen, Y.H. Hu, W.W. Chen, et al., Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites, Nano Energy, 18(2015), p. 176. doi: 10.1016/j.nanoen.2015.10.003
      [98]
      Y. Zhang, C.H. Zhang, Y. Feng, et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction, Nano Energy, 56(2019), p. 138. doi: 10.1016/j.nanoen.2018.11.044
      [99]
      J. Wang, Z. Yang, J.Y. Jiang, C.Y. Deng, and K.J. Zhu, Enhanced breakdown strength and energy density of multilayered P(VDF-HFP)/Nd-doped BaTiO3 nanofibers composites, Chem. Eng. J., 427(2022), art. No. 131811. doi: 10.1016/j.cej.2021.131811
      [100]
      M.M. Yuan, H.J. Liu, and F. Ran, Fast-charging cathode materials for lithium & sodium ion batteries, Mater. Today, 63(2023), p. 360. doi: 10.1016/j.mattod.2023.02.007
      [101]
      A.M. Huang, Y.C. Ma, J. Peng, et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience, 1(2021), No. 2, p. 141. doi: 10.1016/j.esci.2021.11.006
      [102]
      T. Fujita, H. Chen, K.T. Wang, et al., Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [103]
      Q. Wei, Y.Y. Wu, S.J. Li, R. Chen, J.H. Ding, and C.Y. Zhang, Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review, Sci. Total Environ., 866(2023), art. No. 161380. doi: 10.1016/j.scitotenv.2022.161380
      [104]
      S.Q. Zhang, N.S. Andreas, R.H. Li, et al., Mitigating irreversible capacity loss for higher-energy lithium batteries, Energy Storage Mater., 48(2022), p. 44. doi: 10.1016/j.ensm.2022.03.004
      [105]
      L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [106]
      X.K. Dai, X.M. Zhang, J.W. Wen, et al., Research progress on high-temperature resistant polymer separators for lithium-ion batteries, Energy Storage Mater., 51(2022), p. 638. doi: 10.1016/j.ensm.2022.07.011
      [107]
      J.Y. Li, Y.Z. Zhang, R. Shang, et al., Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability, Energy Storage Mater., 43(2021), p. 143. doi: 10.1016/j.ensm.2021.08.046
      [108]
      Y. Xia, Q.Y. Wang, Y.N. Liu, et al., Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery, J. Colloid Interface Sci., 638(2023), p. 908. doi: 10.1016/j.jcis.2023.01.138
      [109]
      X.J. Ma, P. Kolla, R.D. Yang, et al., Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators, Electrochim. Acta, 236(2017), p. 417. doi: 10.1016/j.electacta.2017.03.205
      [110]
      W.Z. Gong, J.J. Zhou, S.L. Ruan, and C.Y. Shen, PPESK/PVDF lithium-ion battery composite separators fabricated by combination of electrospinning and electrospraying techniques, J. Mater. Eng., 46(2018), No. 3, p. 1.
      [111]
      C.Y. Tang, Y. He, L. Li, P. Liu, and J. Chen, Preparation of PAN/SIS composite lithium ion battery membrane by electrospinning, Insul. Mater., 54(2021), No. 2, p. 75.
      [112]
      X. Jin, C. Zhao, Z.H. Li, and W.Y. Wang, Preparation and electrochemical performance of PAN/PVDF/PAN composite membrane for lithium battery, J. Tiangong Univ., 40(2021), No. 3, p. 15.
      [113]
      S.J. Jia, Y.H. Liang, and N. Yang, High performance of polyacrylonitrile/[Mg–Al]-layered double hydroxide composite nanofiber separators for safe lithium-ion batteries, Solid State Ion., 370(2021), art. No. 115735. doi: 10.1016/j.ssi.2021.115735
      [114]
      S. Mallick and D. Gayen, Thermal behaviour and thermal runaway propagation in lithium-ion battery systems–A critical review, J. Energy Storage, 62(2023), art. No. 106894. doi: 10.1016/j.est.2023.106894
      [115]
      H.L. Li, T.T. Feng, Y.F. Liang, and M.Q. Wu, Construction of PMIA@PAN/PVDF-HFP/TiO2 coaxial fibrous separator with enhanced mechanical strength and electrolyte affinity for lithium-ion batteries, Chin. Chem. Lett., 34(2023), No. 12, art. No. 108350. doi: 10.1016/j.cclet.2023.108350
      [116]
      Q.S. Fu, W. Zhang, I.P. Muhammad, et al., Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery, Microporous Mesoporous Mater., 311(2021), art. No. 110724. doi: 10.1016/j.micromeso.2020.110724
      [117]
      O.J. Sanumi, P.G. Ndungu, and B.O. Oboirien, Challenges of 3D printing in LIB electrodes: Emphasis on material-design properties, and performance of 3D printed Si-based LIB electrodes, J. Power Sources, 543(2022), art. No. 231840. doi: 10.1016/j.jpowsour.2022.231840
      [118]
      S.J. Kim, M.C. Kim, S.B. Han, et al., 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries, J. Ind. Eng. Chem., 49(2017), p. 105. doi: 10.1016/j.jiec.2017.01.014
      [119]
      L.Y. Yang, J.H. Cao, B.R. Cai, T. Liang, and D.Y. Wu, Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries, Electrochim. Acta, 382(2021), art. No. 138346. doi: 10.1016/j.electacta.2021.138346
      [120]
      M.A. Aminudin, S.K. Kamarudin, B.H. Lim, E.H. Majilan, M.S. Masdar, and N. Shaari, An overview: Current progress on hydrogen fuel cell vehicles, Int. J. Hydrogen Energy, 48(2023), No. 11, p. 4371. doi: 10.1016/j.ijhydene.2022.10.156
      [121]
      Y. Leng, P.W. Ming, D.J. Yang, and C.M. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451(2020), art. No. 227783. doi: 10.1016/j.jpowsour.2020.227783
      [122]
      Ş.M. Eskitoros-Togay, Y.E. Bulbul, Z.K. Cınar, A. Sahin, and N. Dilsiz, Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 48(2023), No. 1, p. 280. doi: 10.1016/j.ijhydene.2022.09.214
      [123]
      M. Wei, M. Jiang, X.B. Liu, M. Wang, and S.C. Mu, Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance, J. Power Sources, 327(2016), p. 384. doi: 10.1016/j.jpowsour.2016.07.083
      [124]
      S.Q. Liu, S. Yuan, Y.W. Liang, et al., Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods, Int. J. Hydrogen Energy, 48(2023), No. 11, p. 4389. doi: 10.1016/j.ijhydene.2022.10.249
      [125]
      S. Kabir, S. Medina, G.X. Wang, G. Bender, S. Pylypenko, and K.C. Neyerlin, Improving the bulk gas transport of Fe–N–C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications, Nano Energy, 73(2020), art. No. 104791. doi: 10.1016/j.nanoen.2020.104791
      [126]
      D. Powers, R. Wycisk, and P.N. Pintauro, Electrospun tri-layer membranes for H2/Air fuel cells, J. Membr. Sci., 573(2019), p. 107. doi: 10.1016/j.memsci.2018.11.046
      [127]
      M.B. Karimi, F. Mohammadi, and K. Hooshyari, Recent approaches to improve Nafion performance for fuel cell applications: A review, Int. J. Hydrogen Energy, 44(2019), No. 54, p. 28919. doi: 10.1016/j.ijhydene.2019.09.096
      [128]
      M. Oroujzadeh, M. Etesami, and S. Mehdipour-Ataei, Poly(ether ketone) composite membranes by electrospinning for fuel cell applications, J. Power Sources, 434(2019), art. No. 226733. doi: 10.1016/j.jpowsour.2019.226733
      [129]
      N.R. Mojarrad, B. Iskandarani, A. Taşdemir, A. Yürüm, S.A. Gürsel, and B.Y. Kaplan, Nanofiber based hybrid sulfonated silica/P(VDF-TrFE) membranes for PEM fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 25, p. 13583. doi: 10.1016/j.ijhydene.2020.08.005
      [130]
      S.M. Abu, M.A. Hannan, M.S.H. Lipu, et al., State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions, J. Cleaner Prod., 394(2023), art. No. 136246. doi: 10.1016/j.jclepro.2023.136246
      [131]
      F.H. Chen, Y.W. Wu, H.H. Zhang, et al., The modulation of the discharge plateau of benzoquinone for sodium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1675. doi: 10.1007/s12613-021-2261-y
      [132]
      N.S.M. Hafiz, G. Singla, and P.K. Jha, Next generation sodium-ion battery: A replacement of lithium, Mater. Today Proc., 2022. https://doi.org/10.1016/j.matpr.2022.11.245
      [133]
      Y. Wang, Y.K. Liu, Y.C. Liu, et al., Recent advances in electrospun electrode materials for sodium-ion batteries, J. Energy Chem., 54(2021), p. 225. doi: 10.1016/j.jechem.2020.05.065
      [134]
      M. Patel, K. Mishra, R. Banerjee, J. Chaudhari, D.K. Kanchan, and D. Kumar, Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems, J. Energy Chem., 81(2023), p. 221. doi: 10.1016/j.jechem.2023.02.023
      [135]
      B. He, K.B. Yin, W.B. Gong, et al., NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries, Nano Energy, 82(2021), art. No. 105764. doi: 10.1016/j.nanoen.2021.105764
      [136]
      S. Kim, M.S. Kwon, J.H. Han, et al., Poly(ethylene-co-vinyl acetate)/polyimide/poly(ethylene-co-vinyl acetate) tri-layer porous separator with high conductivity and tailored thermal shutdown function for application in sodium-ion batteries, J. Power Sources, 482(2021), art. No. 228907. doi: 10.1016/j.jpowsour.2020.228907
      [137]
      K.T. Cho, P. Ridgway, A.Z. Weber, S. Haussener, V. Battaglia, and V. Srinivasan, High performance hydrogen/bromine redox flow battery for grid-scale energy storage, J. Electrochem. Soc., 159(2012), No. 11, p. A1806. doi: 10.1149/2.018211jes
      [138]
      K. Saadi, S.S. Hardisty, Z. Tatus-Portnoy, and D. Zitoun, Influence of loading, metallic surface state and surface protection in precious group metal hydrogen electrocatalyst for H2/Br2 redox-flow batteries, J. Power Sources, 536(2022), art. No. 231494. doi: 10.1016/j.jpowsour.2022.231494
      [139]
      S. Abbasi, A. Forner-Cuenca, W. Kout, K. Nijmeijer, and Z. Borneman, Low-cost wire-electrospun sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membranes for hydrogen-bromine flow batteries, J. Membr. Sci., 628(2021), art. No. 119258. doi: 10.1016/j.memsci.2021.119258
      [140]
      Y.A. Hugo, W. Kout, A. Forner-Cuenca, Z. Borneman, and K. Nijmeijer, Wire based electrospun composite short side chain perfluorosulfonic acid/polyvinylidene fluoride membranes for hydrogen-bromine flow batteries, J. Power Sources, 497(2021), art. No. 229812. doi: 10.1016/j.jpowsour.2021.229812

    Catalog


    • /

      返回文章
      返回