留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1521
  • HTML全文浏览量:  147
  • PDF下载量:  21
  • 被引次数: 0
Junjie Shi, Yumo Zhai, Yuchao Qiu, Changle Hou, Jingjing Dong, Maoxi Yao, Haolun Li, Yongrong Zhou, and Jianzhong Li, Phase equilibria relations in the V2O5-rich part of the Fe2O3–TiO2–V2O5 system at 1200°C related to converter vanadium-bearing slag, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2017-2024. https://doi.org/10.1007/s12613-024-2845-4
Cite this article as:
Junjie Shi, Yumo Zhai, Yuchao Qiu, Changle Hou, Jingjing Dong, Maoxi Yao, Haolun Li, Yongrong Zhou, and Jianzhong Li, Phase equilibria relations in the V2O5-rich part of the Fe2O3–TiO2–V2O5 system at 1200°C related to converter vanadium-bearing slag, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2017-2024. https://doi.org/10.1007/s12613-024-2845-4
引用本文 PDF XML SpringerLink
研究论文

1200℃时Fe2O3–TiO2–V2O5体系富V2O5区域相平衡关系的研究


  • 通讯作者:

    石俊杰    E-mail: junjieshi@126.com

文章亮点

  • (1) 系统地研究了1200℃时空气气氛下Fe2O3–TiO2–V2O5体系相平衡关系。
  • (2) 确定了1200℃时空气气氛下铁、钛和钒的价态分别为3+、4+和5+。
  • (3) 明确了铁板钛矿固溶体内TiO2和V2O5含量随Fe2O3含量的变化趋势。
  • 从转炉含钒矿渣中有效回收金属钒对于可持续发展和循环经济具有重要意义。开发新型工艺和改进传统路线的关键在于获得准确的热力学数据。本研究采用高温平衡淬火技术,研究了Fe2O3–TiO2–V2O5体系在1200°C时空气气氛下中的平衡关系。通过扫描电子显微镜(SEM)-能量色散X射线光谱仪(EDS)和X射线光电子能谱(XPS)对样品进行了详细分析。研究结果表明,该体系中存在一个液相区、两个两相区(液相金红石和液相铁板钛矿)以及一个三相区(液相金红石铁板钛矿)。同时,研究了金红石和铁板钛矿固溶体中TiO2和V2O5含量随Fe2O3含量的变化情况。然而,在与FactSage 8.1的预测结果进行比较时,发现存在显著差异,这表明更新当前与含钒矿渣系统相关的热力学数据库具有十分重要的意义。
  • Research Article

    Phase equilibria relations in the V2O5-rich part of the Fe2O3–TiO2–V2O5 system at 1200°C related to converter vanadium-bearing slag

    + Author Affiliations
    • The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy. The key to developing novel processes and improving traditional routes lies in the thermodynamic data. In this study, the equilibrium phase relations for the Fe2O3–TiO2–V2O5 system at 1200°C in air were investigated using a high-temperature equilibrium-quenching technique, followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy. One liquid-phase region, two two-phase regions (liquid–rutile and liquid–ferropseudobrookite), and one three-phase region (liquid–rutile–ferropseudobrookite) were determined. The variation in the TiO2 and V2O5 contents with the Fe2O3 content was examined for rutile and ferropseudobrookite solid solutions. However, on further comparison with the predictions of FactSage 8.1, significant discrepancies were identified, highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.
    • loading
    • [1]
      G.S. Pei, J.Y. Xiang, X.W. Lv, G. Li, S.S. Wu, D.P. Zhong, and W. Lv, High-temperature heat capacity and phase transformation kinetics of NaVO3, J. Alloys Compd., 794(2019), p. 465. doi: 10.1016/j.jallcom.2019.04.186
      [2]
      S.Y. Liu, Y.L. Zhen, X.B. He, L.J. Wang, and K. Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p.1678. doi: 10.1007/s12613-020-2140-y
      [3]
      F. Gao, A.U. Olayiwola, B. Liu, et al., Review of vanadium production part I: Primary resources, Miner. Process. Extr. Metall. Rev., 43(2022), No. 4, p. 466. doi: 10.1080/08827508.2021.1883013
      [4]
      B.J. Chen, T. Jiang, J. Wen, G.D. Yang, T.X. Yu, F.X. Zhu, and P. Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p.498. doi: 10.1007/s12613-023-2719-1
      [5]
      X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1860. doi: 10.1016/S1003-6326(11)60942-4
      [6]
      J.F. Liaoand B.J. Zhao, Phase equilibrium studies of titanomagnetite and ilmenite smelting slags, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2162. doi: 10.1007/s12613-021-2376-1
      [7]
      J. Wen, T. Jiang, Y.Z. Xu, J. Cao, and X.X. Xue, Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting–(NH4)2SO4 leaching, J. Ind. Eng. Chem., 71(2019), p. 327. doi: 10.1016/j.jiec.2018.11.043
      [8]
      T.X. Yu, T. Jiang, J. Wen, H.Y. Sun, M. Li, and Y. Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p.2144. doi: 10.1007/s12613-021-2334-y
      [9]
      H. Peng, J. Guo, X.G. Zheng, Z.H. Liu, and C.Y. Tao, Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium, J. Environ. Chem. Eng., 6(2018), No. 4, p. 5119. doi: 10.1016/j.jece.2018.08.003
      [10]
      J.H. Zhang, W. Zhang, and Z.L. Xue, Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide, Miner. Process. Extr. Metall. Rev., 38(2017), No. 5, p. 265. doi: 10.1080/08827508.2017.1289197
      [11]
      H.Y. Gao, T. Jiang, M. Zhou, J. Wen, X. Li, Y. Wang, and X.X. Xue, Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag, Miner. Eng., 145(2020), art. No. 106056. doi: 10.1016/j.mineng.2019.106056
      [12]
      L. Tian, Z.F. Xu, L.J. Chen, Y. Liu, and T.A. Zhang, Effect of microwave heating on the pressure leaching of vanadium from converter slag, Hydrometallurgy, 184(2019), p. 45. doi: 10.1016/j.hydromet.2018.11.004
      [13]
      J. Wen, T. Jiang, H.Y. Gao, Y.J. Liu, X.L. Zheng, and X.X. Xue, Comparison of ultrasound-assisted and regular leaching of vanadium and chromium from roasted high chromium vanadium slag, JOM, 70(2018), No. 2, p. 155. doi: 10.1007/s11837-017-2662-6
      [14]
      Q. Zhao, C. Liu, X. Mei, H. Saxén, and R. Zevenhoven. Research progress of steel slag-based carbon sequestration, Fundam. Res., (2022). https://doi.org/10.1016/j.fmre.2022.09.023.
      [15]
      X.F. Zhang, F.G. Liu, X.X. Xue, and T. Jiang, Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content, J. Alloys Compd., 686(2016), p. 356. doi: 10.1016/j.jallcom.2016.06.038
      [16]
      J.C. Lee, Kurniawan, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production, J. Mater. Res. Technol., 12(2021), p. 343. doi: 10.1016/j.jmrt.2021.02.065
      [17]
      H.Y. Li, H.X. Fang, K. Wang, et al., Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching, Hydrometallurgy, 156(2015), p. 124. doi: 10.1016/j.hydromet.2015.06.003
      [18]
      B.J. Yan, D.Y. Wang, Q.G. Qiu, and T.F. Deng, Phase relations in the “FeO–V2O3” system at 1473 K and the magnetic properties of spinel phase Fe3VO4, Ceram. Int., 46(2020), No. 5, p. 6160. doi: 10.1016/j.ceramint.2019.11.082
      [19]
      W. Xie, X.R. Xing, and Z.M. Cao, Phase equilibria in the Fe–V–O system near “FeO”–V2O3 isopleth, J. Am. Ceram. Soc., 103(2020), No. 9, p. 5312. doi: 10.1111/jace.17201
      [20]
      W.D. Malan, G. Akdogan, P. Taskinen, J. Hamuyuni, and J. Zietsman, Phase equilibria and thermodynamic evaluation of the Fe–V–O system in air, Calphad, 63(2018), p. 12. doi: 10.1016/j.calphad.2018.08.003
      [21]
      D.S. Feng, J.B. Zhang, M. Li, M. Chen, and B.J. Zhao, Phase Equilibria of the SiO2–V2O5 system, Ceram. Int., 46(2020), No. 15, p. 24053. doi: 10.1016/j.ceramint.2020.06.183
      [22]
      T. Coetsee, C. Pistorius, Preliminary observations on phase relations in the “V2O3–FeO” and V2O3–TiO2 systems from 1400°C to 1600°C in reducing atmospheres, J. Am. Ceram. Soc., 83(2000), p. 1485. doi: 10.1111/j.1151-2916.2000.tb01414.x
      [23]
      Y. Yang, H.H. Mao, H.L. Chen, and M. Selleby, An assessment of the Ti−V−O system, J. Alloys Compd., 722(2017), p. 365. doi: 10.1016/j.jallcom.2017.05.326
      [24]
      L. Fotiev, A. Tret'yakov, and Z. Khim, Compatibility relations in the Fe2O3−TiO2−V2O5, Cr2O3−TiO2−V2O5 and Al2O3−TiO2−V2O5 systems, Russ. J. Inorg. Chem., 26(1981). p. 1377.
      [25]
      W.D. Malan, G. Akdogan, P. Taskinen, and J. Zietsman, Phase equilibria and thermodynamic evaluation of the Fe−Ti−V−O system in air, Calphad, 65(2019), p. 141. doi: 10.1016/j.calphad.2019.02.014
      [26]
      J. Shi, Y. Qiu, X. Wan, B. Yu, M. Chen, F. Zhao, J. Li, C. Liu, and P. Taskinen, Equilibrium phase relations of the CaO−SiO2−Ti3O5 system at 1400°C and a p(O2) of 10−16 atm, JOM, 74(2022), p. 668. doi: 10.1007/s11837-021-05049-3
      [27]
      X. Wan, J. Shi, Y. Qiu, M. Chen, J. Li, C. Liu, P. Taskinen, and A. Jokilaakso, The effect of 15wt% Al2O3 addition on the equilibrium phase relations of CaO−SiO2−TiO2 system at 1400°C in air, Ceram. Int., 47(2021), p. 24802. doi: 10.1016/j.ceramint.2021.05.205
      [28]
      Y.D. Li, Y.C. Qiu, J.J. Shi, B.Y. Zhang, F. Meng, J.Z. Li, and C.S. Liu, Equilibrium phase relations of a SiO2–Al2O3–FeO x system with 10 wt% CaO addition for the production of continuous basalt fibers, ACS Omega, 6(2021), No. 33, p. 21465. doi: 10.1021/acsomega.1c02287
      [29]
      X.B. Wan, M. Chen, Y.C. Qiu, J.J. Shi, J. Li, C.S. Liu, P. Taskinen, and A. Jokilaakso, Influence of manganese oxide on the liquid-perovskite equilibrium in the CaO–SiO2–TiO2 system at 1400°C in air, Ceram. Int., 47(2021), No. 8, p. 11176. doi: 10.1016/j.ceramint.2020.12.241
      [30]
      Y. Qiu, J. Shi, B. Yu, C. Hou, J. Dong, S. Li, Y. Zhai, J. Li, and C. Liu, Phase equilibria of MgO–Al2O3–TiO2 system at 1600°C in air: Emphasis on pseudobrookite and spinel solid solution phases, J. Am. Ceram. Soc., 105(2022), p. 6953. doi: 10.1111/jace.18642
      [31]
      I.H. Jung and M.A. Van Ende, Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1851. doi: 10.1007/s11663-020-01908-7
      [32]
      M. Chen, X.B. Wan, J.J. Shi, P. Taskinen, and A. Jokilaakso, Experimental study on the phase relations of the SiO2−MgO−TiO2 system in air at 1500°C, JOM, 74(2022), No. 2, p. 676. doi: 10.1007/s11837-021-04870-0
      [33]
      M. Chen, X.B. Wan, P. Taskinen, D. Sukhomlinov, J.J. Shi, R. Michallik, and A. Jokilaakso, Phase equilibria in TiO2-rich part of the MgO–CaO–TiO2 system at 1500–1600°C, Ceram. Int., 48(2022), No. 14, p. 20116. doi: 10.1016/j.ceramint.2022.03.290
      [34]
      D.S. Feng, M. Li, S.L. Yee, Y. Jiang, M. Chen, Y. Peng, and X.D. Ma, Phase equilibrium studies in V2O5−Fe2O3 and V2O5−TiO2 systems, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4843. doi: 10.1111/jace.17851

    Catalog


    • /

      返回文章
      返回