留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(15)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  111
  • HTML全文浏览量:  46
  • PDF下载量:  9
  • 被引次数: 0
Qiuyan Shen, Yongxing Ba, Peng Zhang, Jiangfeng Song, Bin Jiang, and Fusheng Pan, Recent progress in the research on magnesium and magnesium alloy foils: a short review, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2846-3
Cite this article as:
Qiuyan Shen, Yongxing Ba, Peng Zhang, Jiangfeng Song, Bin Jiang, and Fusheng Pan, Recent progress in the research on magnesium and magnesium alloy foils: a short review, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2846-3
引用本文 PDF XML SpringerLink
特约综述

镁及镁合金箔材的研究进展


文章亮点

  • (1) 系统地总结了目前国内外镁及镁合金箔材研究现状
  • (2) 总结了镁及镁合金箔材的制备方法及其优缺点
  • (3) 总结了镁及镁合金箔材在制备过程中产生的缺陷及缺陷形成机制
  • 镁及镁合金箔具有优异的比阻尼、内耗散系数、磁导率和电导率,以及较高的理论比容量,在电池负极、电磁屏蔽、光学声学和生物等领域具有巨大的应用潜力。然而,镁合金的密排六方晶体结构使其变形能力较差,制备厚度小于0.1 mm的镁及镁合金箔材很困难。这是因为高温下的表面氧化和晶粒长大,或者冷轧后严重的各向异性导致裂纹产生。目前,许多方法用于制备镁合金箔材,主要包括温轧、冷轧、累积叠轧、电塑性轧制和在线加热轧制。镁及镁合金箔材在制备过程中产生的边裂、断带等缺陷是需要考虑的重要因素。本文从镁及镁合金箔材的制备、缺陷控制、性能表征及应用前景等方面综述了其研究现状,分析了不同制备方法的优缺点以及箔材制备过程中的缺陷(边裂和断带)机理。
  • Invited Review

    Recent progress in the research on magnesium and magnesium alloy foils: a short review

    + Author Affiliations
    • Magnesium and magnesium alloy foils have great potential for application in battery anodes, electromagnetic shielding, optics and acoustics, and biology because of their excellent specific damping, internal dissipation coefficients, magnetic and electrical conductivities, as well as high theoretical specific capacity. However, magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure. Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks. Numerous methods have been applied to prepare magnesium alloy foils. They include warm rolling, cold rolling, accumulative roll bonding, electric plastic rolling, and on-line heating rolling. Defects of magnesium and magnesium alloy foils during preparation, such as edge cracks and breakage, are important factors for consideration. Herein, the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation, defect control, performance characterization, and application prospects. The advantages and disadvantages of different preparation methods and defect (edge cracks and breakage) mechanisms in the preparation of foils are identified.
    • loading
    • [1]
      Q. Liu, J. Song, Q. Shen, et al., Comparison on crack propagation under tension at 150°C of Mg–2Zn–1.5 Mn alloy sheets with and without crack notch, J. Magnes. Alloys, 11(2023), No. 5, p. 1536. doi: 10.1016/j.jma.2022.09.030
      [2]
      V.M. Miller, J.F. Nie, and T.M. Pollock, Nucleation of recrystallization in magnesium alloy grains of varied orientation and the impacts on texture evolution, J. Magnes. Alloys, 10(2022), No. 11, p. 3041. doi: 10.1016/j.jma.2022.09.006
      [3]
      H. Chen, Y. Yang, C. Hu, et al., Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater, 30(2023), No. 12, p. 2397. doi: 10.1007/s12613-023-2706-6
      [4]
      Z.R. Zeng, M. Salehi, A. Kopp, S.W. Xu, M. Esmaily, and N. Birbilis, Recent progress and perspectives in additive manufacturing of magnesium alloys, J. Magnes. Alloys, 10(2022), No. 6, p. 1511. doi: 10.1016/j.jma.2022.03.001
      [5]
      J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnes. Alloys, 10(2022), No. 4, p. 863. doi: 10.1016/j.jma.2022.04.001
      [6]
      Z. Zeng, M. Bian, S. Xu, et al., Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1388. doi: 10.1007/s12613-021-2365-4
      [7]
      H. Yang, Y. Chai, B. Jiang, et al., Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1343. doi: 10.1007/s12613-021-2370-7
      [8]
      T. Cao, Y. Zhu, Y. Gao, et al., Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No.No. 5, p. 949. doi: 10.1007/s12613-022-2572-7
      [9]
      R. Attias, M. Salama, B. Hirsch, Y. Goffer, and D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries, Joule, 3(2019), No. 1, p. 27. doi: 10.1016/j.joule.2018.10.028
      [10]
      M.L. Mao, T. Gao, S. Hou, and C.S. Wang, A critical review of cathodes for rechargeable Mg batteries, Chem. Soc. Rev., 47(2018), No. 23, p. 8804. doi: 10.1039/C8CS00319J
      [11]
      C.L. You, X.W. Wu, X.H. Yuan, et al., Advances in rechargeable Mg batteries, J. Mater. Chem. A, 8(2020), No. 48, p. 25601. doi: 10.1039/D0TA09330K
      [12]
      G. Williams, H.N. McMurray, and R. Grace, Inhibition of magnesium localised corrosion in chloride containing electrolyte, Electrochim. Acta, 55(2010), No. 27, p. 7824. doi: 10.1016/j.electacta.2010.03.023
      [13]
      B.J. Li, J.P. Sun, B.Q. Xu, and G.S. Wu, Corrosion behavior of Mg–5.7Gd–1.9Ag Mg alloy sheet, J. Alloys Compd., 915(2022), art. No. 165241. doi: 10.1016/j.jallcom.2022.165241
      [14]
      J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
      [15]
      Y. Yang, S.J. Cao, T. Ying, et al., The effects of a corrosion product film on the corrosion behavior of Mg-Al alloy with micro-alloying of yttrium in a chloride solution, Corros. Commun., 11(2023), p. 12. doi: 10.1016/j.corcom.2022.10.002
      [16]
      X.W. Xiao, S. Xu, D.S. Sui, and H.M. Zhang, The electroplastic effect on the deformation and twinning behavior of AZ31 foils during micro-bending tests, Mater. Lett., 288(2021), art. No. 129362. doi: 10.1016/j.matlet.2021.129362
      [17]
      J.P. Sun, B.J. Li, J. Yuan, et al., Developing a high-performance Mg-5.7Gd-1.9Ag wrought alloy via hot rolling and aging, Mater. Sci. Eng. A, 803(2021), art. No. 140707. doi: 10.1016/j.msea.2020.140707
      [18]
      L.P. Yang, H.L. Zhang, and G.L. Liu, Performance analysis of wide magnesium alloy foil rolled by multi-pass electric plastic rolling, Met. Mater. Int., 29(2023), No. 10, p. 2783. doi: 10.1007/s12540-023-01414-w
      [19]
      B. Shi, C. Yang, Y. Peng, F. Zhang, and F. Pan, Anisotropy of wrought magnesium alloys: A focused overview, J. Magnes. Alloys, 10(2022), No. 6, p. 1476. doi: 10.1016/j.jma.2022.03.006
      [20]
      Z.Z. Jin, M. Zha, S.Q. Wang, et al., Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility, J. Magnes. Alloys, 10(2022), No. 5, p. 1129. doi: 10.1016/j.jma.2022.04.002
      [21]
      K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Mater., 63(2010), No. 7, p. 725. doi: 10.1016/j.scriptamat.2009.12.033
      [22]
      G. Zhang, L. Ma, and H. Lu, Change of temperature field for roll of warm-rolled magnesium alloy sheet, J. Taiyuan Univ. Sci. Technol., 5(2018), p. 359.
      [23]
      P. Yang, L. Meng and W. Cai, Improvement of formability of magnesium alloys by pass interval annealing during rolling, Trans. Mater. Heat Treat., 26(2005), No.2, p.34.
      [24]
      Y. Zhang, H. Zhao, X. Hu, and L. Fang, Microstructure and property of MnE21 magnesium alloy rolling sheet, Light Alloy Fab. Technol., 45(2017), No.12, p. 18.
      [25]
      H. Somekawa, N. Motohashi, S. Kuroda, and T. Mandai, Mechanical and functional properties of ultra-thin Mg foils, Mater. Sci. Eng. A, 872(2023), art. No. 144934. doi: 10.1016/j.msea.2023.144934
      [26]
      T. Mandai and H. Somekawa, Ultrathin magnesium metal anode–An essential component for high-energy-density magnesium battery materialization, Batteries Supercaps, 5(2022), No. 9, art. No. e202200153. doi: 10.1002/batt.202200153
      [27]
      O.V. Antonova, A.Y. Volkov, B.I. Kamenetskii, and D.A. Komkova, Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature, Mater. Sci. Eng. A, 651(2016), p. 8. doi: 10.1016/j.msea.2015.10.097
      [28]
      Y. Sun, J. Han, and L. Zheng, Effect of different pack rolling processes on structure and rolling forming ability of AZ31B magnesium alloy ultra-thin sheet, Light Alloy Fab. Technol., 46(2018), p. 24.
      [29]
      P. Gao, Fabrication Process of Magnesium Alloy Foil [Dissertation], Liaoning University of Science and Technology, Anshan, 2011.
      [30]
      Q.Y. Shen, J.F. Song, H.F. Feng, et al., On-line heating rolling behavior of Mg9999 sheets under large single pass reduction, J. Mater. Res. Technol., 26(2023), p. 6719. doi: 10.1016/j.jmrt.2023.09.029
      [31]
      T.G. Nieh and J. Wadsworth, Magnesium alloy AZ31 foil prepared by sputter deposition at 200°C, J. Mater. Sci. Lett., 6(1987), No. 10, p. 1150. doi: 10.1007/BF01729166
      [32]
      T. Voisin, N.M. Krywopusk, F. Mompiou, and T.P. Weihs, Precipitation strengthening in nanostructured AZ31B magnesium thin films characterized by nano-indentation, STEM/EDS, HRTEM, and in situ TEM tensile testing, Acta Mater., 138(2017), p. 174. doi: 10.1016/j.actamat.2017.07.050
      [33]
      Y. Shi, Y. Zhang, S. Hu, and Q. Chen, Electrochemical behavior of AZ31 alloy as anode material for magnesium battery, Corros Prot., 33(2012), p. 174.
      [34]
      T. Liu, B. Song, G. Huang, et al., Preparation, structure and properties of Mg/Al laminated metal composites fabricated by roll-bonding, a review, J. Magnes. Alloys, 10(2022), No. 8, p. 2062. doi: 10.1016/j.jma.2022.08.001
      [35]
      M.R. Rezaei, M.R. Toroghinejad, and F. Ashrafizadeh, Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy, J. Mater. Process. Technol., 211(2011), No. 6, p. 1184. doi: 10.1016/j.jmatprotec.2011.01.023
      [36]
      H. Hosokawa, Y. Chino, K. Shimojima, et al., Mechanical properties and blow forming of rolled AZ31 Mg alloy sheet, Mater. Trans., 44(2003), No. 4, p. 484. doi: 10.2320/matertrans.44.484
      [37]
      L. Qian, L. Zhan, B. Zhou, X. Zhang, S. Liu, and Z. Lv, Effects of electroplastic rolling on mechanical properties and microstructure of low-carbon martensitic steel, Mater. Sci. Eng. A, 812(2021), art. No. 141144. doi: 10.1016/j.msea.2021.141144
      [38]
      L.P. Yang, H.L. Zhang, and G.L. Liu, Anisotropy evolution of wide magnesium alloy foils during continuous electroplastic rolling, J. Mech. Sci. Technol., 37(2023), No. 4, p. 1747. doi: 10.1007/s12206-023-0315-y
      [39]
      H. Xiao, Z. Lu, K.F. Zhang, S.S. Jiang, and C.C. Shi, Achieving outstanding combination of strength and ductility of the Al-Mg-Li alloy by cold rolling combined with electropulsing assisted treatment, Mater. Des., 186(2020), art. No. 108279. doi: 10.1016/j.matdes.2019.108279
      [40]
      X. Li, X. Li, Y. Ye, et al., Deformation mechanisms and recrystallization behavior of Mg–3Al–1Zn and Mg–1Gd alloys deformed by electroplastic–asymmetric rolling, Mater. Sci. Eng. A, 742(2019), p. 722. doi: 10.1016/j.msea.2018.09.041
      [41]
      H.J. Guo, X. Zeng, J.F. Fan, et al., Effect of electropulsing treatment on static recrystallization behavior of cold-rolled magnesium alloy ZK60 with different reductions, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1113. doi: 10.1016/j.jmst.2018.11.008
      [42]
      L.P. Yang, G.L. Liu, and H.L. Zhang, Investigation on thermomechanical field distribution by various electrothermal modes for wide magnesium alloy foil, J. Mater. Eng. Perform., 31(2022), No. 10, p. 8239. doi: 10.1007/s11665-022-06817-1
      [43]
      Y.B. Jiang, L. Guan, G.Y. Tang, B. Cheng, and D.B. Liu, Microstructure and texture evolution of Mg–3Zn–1Al magnesium alloy during large-strain electroplastic rolling, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 411. doi: 10.1007/s12613-015-1087-x
      [44]
      S. Sun, G. Song, H. Liao, V.E. Gromov, A.I. Potekaev, and G. Tang, Multi-pass thermo-electropulsing rolling improved mechanical properties of AZ31 magnesium alloy strips, Russ. Phys. J., 57(2014), p. 8.
      [45]
      L.P. Yang, H.L. Zhang, and Y.S. Zhang, Present analysis and trend prediction of shape/performance collaborative control for high-end cold rolling foils, Acta Metall. Sin., 57(2020), No. 3, p. 295.
      [46]
      T. Sun and J.P. Li, Method for outlet temperature control during warm rolling of AZ31 sheets with heated rolls, ISIJ Int., 57(2017), No. 9, p. 1577. doi: 10.2355/isijinternational.ISIJINT-2016-744
      [47]
      Q. Liu, Y. Liu, Q. Luo, et al., Ameliorating the edge cracking behavior of Mg–Mn–Al alloy sheets prepared by multi-pass online heating rolling, J. Manuf. Processes, 85(2023), p. 977. doi: 10.1016/j.jmapro.2022.12.017
      [48]
      Y.C. Huang, B.Q. Xiao, J.F. Song, et al., Effect of tension on edge crack of on-line heating rolled AZ31B magnesium alloy sheet, J. Mater. Res. Technol., 9(2020), No. 2, p. 1988. doi: 10.1016/j.jmrt.2019.12.031
      [49]
      F. Pan, B. Zeng, B. Jiang, M. Zhang, and H. Dong, Enhanced mechanical properties of AZ31B magnesium alloy thin sheets processed by on-line heating rolling, J. Alloys Compd., 693(2017), p. 414. doi: 10.1016/j.jallcom.2016.09.220
      [50]
      B.Q. Xiao, J.F. Song, A.T. Tang, et al., Effect of pass reduction on distribution of shear bands and mechanical properties of AZ31B alloy sheets prepared by on-line heating rolling, J. Mater. Process. Technol., 280(2020), art. No. 116611. doi: 10.1016/j.jmatprotec.2020.116611
      [51]
      Q. Liu, B. Feng, H. Yang, et al., Comparison of edge crack behavior of Mg sheets prepared by online heating rolling, J. Mater. Res. Technol., 19(2022), p. 5037. doi: 10.1016/j.jmrt.2022.07.022
      [52]
      W.T. Jia, L.F. Ma, M.Y. Jiao, Q.C. Le, T.Z. Han, and C.J. Che, Fracture criterion for predicting edge-cracking in Hot rolling of twin-roll casted AZ31 Mg alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 4773. doi: 10.1016/j.jmrt.2020.02.103
      [53]
      F.K. Ning, X. Zhou, Q.C. Le, X.Q. Li, and Y. Li, Fracture and deformation characteristics of AZ31 magnesium alloy plate during tension rolling, Mater. Today Commun., 24(2020), art. No. 101129. doi: 10.1016/j.mtcomm.2020.101129
      [54]
      Z.Q. Huang, Q.X. Huang, J.C. Wei, L.F. Ma, D.Z. Wu, and D.P. He, Inhibitory effects of prefabricated crown on edge crack of rolled AZ31 magnesium alloy plate, J. Mater. Process. Technol., 246(2017), p. 85. doi: 10.1016/j.jmatprotec.2017.01.034
      [55]
      D.H. Peng, F. Li, Y. Wang, and X.M. Xiao, Formability and interface structure of Al/Mg/Al composite sheet rolled by hard-plate rolling (HPR), Int. J. Adv. Manuf. Technol., 118(2022), No. 1, p. 55.
      [56]
      H. Zhang, M. Zha, T. Tian, et al., Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg–Al–Zn alloys processed by hard-plate rolling (HPR), Mater. Sci. Eng. A, 808(2021), art. No. 140920. doi: 10.1016/j.msea.2021.140920
      [57]
      H.Y. Wang, Z.P. Yu, L. Zhang, et al., Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process, Sci. Rep., 5(2015), art. No. 17100. doi: 10.1038/srep17100
      [58]
      Q. Liu, J.F. Song, F.S. Pan, J. She, S. Zhang, and P. Peng, The edge crack, texture evolution, and mechanical properties of Mg–1Al–1Sn–Mn alloy sheets prepared using on-line heating rolling, Metals, 8(2018), No. 10, art. No. 860. doi: 10.3390/met8100860
      [59]
      J. Tian, H. Lu, W. Zhang, et al., An effective rolling process of magnesium alloys for suppressing edge cracks: Width-limited rolling, J. Magnes. Alloys, 10(2022), No. 8, p. 2193. doi: 10.1016/j.jma.2021.01.007
      [60]
      Z.Q. Huang, C.L. Qi, J.C. Zou, H.Y. Lai, H. Guo, and J.P. Wang, Edge crack damage analysis of AZ31 magnesium alloy hot-rolled plate improved by vertical roll pre-rolling, J. Magnes. Alloys, 11(2023), No. 6, p. 2151. doi: 10.1016/j.jma.2021.08.038
      [61]
      W.T. Jia, Q.C. Le, Y. Tang, Y.P. Ding, F.K. Ning, and J.Z. Cui, Role of pre-vertical compression in deformation behavior of Mg alloy AZ31B during super-high reduction hot rolling process, J. Mater. Sci. Technol., 34(2018), No. 11, p. 2069. doi: 10.1016/j.jmst.2018.04.005
      [62]
      C.C. Zhi, L.F. Ma, Q.X. Huang, Z.Q. Huang, and J.B. Lin, Improvement of magnesium alloy edge cracks by multi-cross rolling, J. Mater. Process. Technol., 255(2018), p. 333. doi: 10.1016/j.jmatprotec.2017.12.022
      [63]
      J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced rollability of Mg3Al1Zn alloy by pulsed electric current: a comparative study, Mater. Des., 100(2016), p. 204. doi: 10.1016/j.matdes.2016.03.126
      [64]
      W.T. Jia, Y. Tang, F.K. Ning, Q.C. Le, and L. Bao, Optimum rolling speed and relevant temperature- and reduction-dependent interfacial friction behavior during the break-down rolling of AZ31B alloy, J. Mater. Sci. Technol., 34(2018), No. 11, p. 2051. doi: 10.1016/j.jmst.2018.03.020
      [65]
      F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, S.S. Chai, and F.S. Pan, Influence of rolling speed on microstructure and mechanical properties of AZ31 Mg alloy rolled by large strain hot rolling, Mater. Sci. Eng. A, 607(2014), p. 383. doi: 10.1016/j.msea.2014.04.024
      [66]
      F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, S.S. Chai, and F.S. Pan, Effect of rolling speed on microstructure and mechanical properties of AZ31 Mg alloys rolled with a wide thickness reduction range, Mater. Sci. Eng. A, 619(2014), p. 66. doi: 10.1016/j.msea.2014.09.024
      [67]
      Z.Y. Xu, C.F. Fang, R. Wang, C.Y. Zhong, and Y.M. Wang, Microstructural evolution, strengthening and toughening mechanisms of AZ80 composite sheet reinforced by TiB2 with fiber-like distribution, J. Alloys Compd., 877(2021), art. No. 160278. doi: 10.1016/j.jallcom.2021.160278
      [68]
      L.J. Chen, Q.L. Jing, and H. Li, Effects of grain refinement on the prevention of edge cracking during hot rolling of AZ31 magnesium alloy, Appl. Mech. Mater., 723(2015), p. 914. doi: 10.4028/www.scientific.net/AMM.723.914
      [69]
      S. Xu, X.Q. Shang, H.M. Zhang, X.H. Dong, and Z.S. Cui, Size effects on the mechanical responses and deformation mechanisms of AZ31 Mg foils, Metall. Mater. Trans. A, 52(2021), No. 8, p. 3585. doi: 10.1007/s11661-021-06331-4
      [70]
      S. Xu, X. Xiao, H. Zhang, and Z. Cui, Electroplastic effects on the mechanical responses and deformation mechanisms of AZ31 Mg foils, Materials, 15(2022), No. 4, art. No. 1339. doi: 10.3390/ma15041339
      [71]
      D.A. Komkova and A.Y. Volkov, Temperature anomaly of strength properties in deformed magnesium foil, Met. Sci. Heat Treat., 59(2018), No. 11, p. 755.
      [72]
      Z.R. Zeng, Y.M. Zhu, M.Z. Bian, et al., Annealing strengthening in a dilute Mg–Zn–Ca sheet alloy, Scr. Mater., 107(2015), p. 127. doi: 10.1016/j.scriptamat.2015.06.002
      [73]
      Y. Xin, X. Zhou, H. Chen, et al., Annealing hardening in detwinning deformation of Mg–3Al–1Zn alloy, Mater. Sci. Eng. A, 594(2014), p. 287. doi: 10.1016/j.msea.2013.11.080
      [74]
      Y. Tian, Y. Li, W. Ji, Y. Chen, and L. Xia, Study on the Effect of Temperature on the Microstructure and Properties of AZ31 Magnesium Alloy Sheet Rolled in Single Pass under High Pressure, J. Phys. Confer. Ser., 2348(2022), No. 1, p. 012002. doi: 10.1088/1742-6596/2348/1/012002
      [75]
      M. Forsyth, P.C. Howlett, S.K. Tan, D.R. MacFarlane, and N. Birbilis, An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31, Electrochem. Solid-State Lett., 9(2006), No. 11, art. No. B52. doi: 10.1149/1.2344826
      [76]
      F. Cao, B. Xiao, Z. Wang, et al., A Mg alloy with no hydrogen evolution during dissolution, J. Magn. Alloys, 11(2023), No. 6, p. 2084. doi: 10.1016/j.jma.2021.08.024
      [77]
      A.A. Abildina, A.P. Kurbatov, Y.G. Bakhytzhan, et al., Corrosion behavior of magnesium in aqueous sulfate-containing electrolytes, J. Magnes. Alloys, 11(2023), No. 6, p. 2125. doi: 10.1016/j.jma.2023.06.001
      [78]
      M.C. Lin, C.Y. Tsai, and J.Y. Uan, Electrochemical behaviour and corrosion performance of Mg–Li–Al–Zn anodes with high Al composition, Corros. Sci., 51(2009), No. 10, p. 2463. doi: 10.1016/j.corsci.2009.06.036
      [79]
      F.W. Richey, B.D. McCloskey, and A.C. Luntz, Mg anode corrosion in aqueous electrolytes and implications for Mg-air batteries, J. Electrochem. Soc., 163(2016), No. 6, p. A958. doi: 10.1149/2.0781606jes
      [80]
      D. Schloffer, S. Bozorgi, P. Sherstnev, C. Lenardt, and B. Gollas, Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries, J. Power Sources, 367(2017), p. 138. doi: 10.1016/j.jpowsour.2017.09.062
      [81]
      R.J. Lv, X.Z. Guan, J.H. Zhang, Y.Y. Xia, and J.Y. Luo, Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase, Natl. Sci. Rev., 7(2020), No. 2, p. 333. doi: 10.1093/nsr/nwz157
      [82]
      C. Wei, L. Tan, Y. Zhang, et al., Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg–S batteries, Energy Storage Mater., 48(2022), p. 447. doi: 10.1016/j.ensm.2022.03.046
      [83]
      Y. Sun, F. Zhang, R. Wang, C. Peng, J. Ren, and G. Song, Improving the corrosion resistance of Mg–8Li–3Al–2Zn alloy by combining Gd alloying and hot extrusion, J. Alloys Compd., 964(2023), art. No. 171205. doi: 10.1016/j.jallcom.2023.171205
      [84]
      Q. Xu, P. Zhou, T. Zhang, and F. Wang, Effect of surface activation on the microstructure and corrosion resistance of MAO/Ni–P composite coating on AZ91D magnesium alloy, Materials, 16(2023), No. 18, art. No. 6185. doi: 10.3390/ma16186185
      [85]
      S. Vincent, J.H. Chang, and J.M. Garcia Lastra, Computational design of ductile magnesium alloy anodes for magnesium batteries, Batteries Supercaps, 4(2021), No. 3, p. 522. doi: 10.1002/batt.202000240
      [86]
      M. Ue and K. Uosaki, Recent progress in liquid electrolytes for lithium metal batteries, Curr. Opin. Electrochem., 17(2019), p. 106. doi: 10.1016/j.coelec.2019.05.001
      [87]
      A. Maddegalla, A. Mukherjee, J.A. Blázquez, et al., AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries, ChemSusChem, 14(2021), No. 21, p. 4690. doi: 10.1002/cssc.202101323
      [88]
      D.V. Bondar, O.V. Kolomoiets, and E.M. Shembel, Magnesium anode for magnesium power sources with non-aqueous electrolyte, Mater. Today Proc., 6(2019), p. 101. doi: 10.1016/j.matpr.2018.10.081
      [89]
      H. Zhao, P. Bian, and D. Ju, Electrochemical performance of magnesium alloy and its application on the sea water battery, J. Environ. Sci. China, 21(2009), No. Suppl 1, p. S88.
      [90]
      T.T. Wen, Y.J. Deng, B.H. Qu, et al., Re-envisioning the key factors of magnesium metal anodes for rechargeable magnesium batteries, ACS Energy Lett., 8(2023), No. 11, p. 4848. doi: 10.1021/acsenergylett.3c01959
      [91]
      T.S. Arthur, N. Singh, and M. Matsui, Electrodeposited Bi, Sb and Bi1− xSb x alloys as anodes for Mg-ion batteries, Electrochem. Commun., 16(2012), No.1, p. 103. doi: 10.1016/j.elecom.2011.12.010
      [92]
      C.Y. Sun, H.L. Wang, F.X. Yang, et al., Layered buserite Mg–Mn oxide cathode for aqueous rechargeable Mg-ion battery, J. Magnes. Alloys, 11(2023), No. 3, p. 840. doi: 10.1016/j.jma.2022.11.005
      [93]
      Q. Zhang, Y.B. Hu, J. Wang, and F.S. Pan, Low-temperatures synthesis of CuS nanospheres as cathode material for magnesium second batteries, J. Magnes. Alloys, 11(2023), No. 1, p. 192. doi: 10.1016/j.jma.2021.05.017
      [94]
      H. Zhang, K. Ye, K. Zhu, et al., High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode, Chemistry, 23(2017), No. 67, p. 17118. doi: 10.1002/chem.201703806
      [95]
      H.Y. Zhang, K. Ye, K. Zhu, et al., Assembly of aqueous rechargeable magnesium ions battery capacitor: The nanowire Mg-OMS-2/graphene as cathode and activated carbon as anode, ACS Sustainable Chem. Eng., 5(2017), No. 8, p. 6727. doi: 10.1021/acssuschemeng.7b00982
      [96]
      H. Zhang, K. Ye, X. Huang, et al., Preparation of Mg1.1Mn6O12·4.5H2O with nanobelt structure and its application in aqueous magnesium-ion battery, J. Power Sources, 338(2017), p. 136. doi: 10.1016/j.jpowsour.2016.10.078
      [97]
      H.Y. Zhang, D.X. Cao, X. Bai, et al., High-cycle-performance aqueous magnesium ions battery capacitor based on a Mg-OMS-1/graphene as cathode and a carbon molecular sieves as anode, ACS Sustainable Chem. Eng., 7(2019), No. 6, p. 6113. doi: 10.1021/acssuschemeng.8b06288
      [98]
      X. Tang, D. Zhou, B. Zhang, et al., A universal strategy towards high–energy aqueous multivalent–ion batteries, Nat. Commun., 12(2021), No. 1, art. No. 2857. doi: 10.1038/s41467-021-23209-6
      [99]
      T.D. Gregory, R.J. Hoffman, and R.C. Winterton, Nonaqueous electrochemistry of magnesium: Applications to energy storage, J. Electrochem. Soc., 137(1990), No. 3, p. 775. doi: 10.1149/1.2086553
      [100]
      L.Y. Han, Z.W. Zhang, J.W. Dai, et al. , In vitro bio-corrosion behaviors of biodegradable AZ31B magnesium alloy under static stresses of different forms and magnitudes, J. Magnes. Alloys, 11(2023), No. 3, p. 1043. doi: 10.1016/j.jma.2021.09.018
      [101]
      H. Delavar, A.J. Mostahsan, and H. Ibrahim, Corrosion and corrosion-fatigue behavior of magnesium metal matrix composites for bio-implant applications: A review, J. Magnes. Alloys, 11(2023), No. 4, p. 1125. doi: 10.1016/j.jma.2023.04.010
      [102]
      M. Hashemi, R. Alizadeh, and T.G. Langdon, Recent advances using equal-channel angular pressing to improve the properties of biodegradable Mg‒Zn alloys, J. Magnes. Alloys, 11(2023), No. 7, p. 2260. doi: 10.1016/j.jma.2023.07.009
      [103]
      A.M. Zhang, P. Lenin, R.C. Zeng, and M.B. Kannan, Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys, J. Magnes. Alloys, 10(2022), No. 5, p. 1154. doi: 10.1016/j.jma.2022.01.001
      [104]
      G. Uppal, A. Thakur, A. Chauhan, and S. Bala, Magnesium based implants for functional bone tissue regeneration–A review, J. Magnes. Alloys, 10(2022), No. 2, p. 356. doi: 10.1016/j.jma.2021.08.017
      [105]
      L. Ling, S. Cai, Q.Q. Li, J.Y. Sun, X.G. Bao, and G.H. Xu, Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy, J. Magnes. Alloys, 10(2022), No. 1, p. 62. doi: 10.1016/j.jma.2021.05.014
      [106]
      S. Wu, Y.S. Jang, Y.K. Kim, S.Y. Kim, S.O. Ko, and M.H. Lee, Surface modification of pure magnesium mesh for guided bone regeneration: in vivo evaluation of rat calvarial defect, Materials, 12(2019), No. 17, art. No. E2684. doi: 10.3390/ma12172684
      [107]
      X. Shan, Y. Xu, S.K. Kolawole, et al., Degradable pure magnesium used as a barrier film for oral bone regeneration, J. Funct. Biomater., 13(2022), No. 4, art. No. 298. doi: 10.3390/jfb13040298
      [108]
      P. Rider, Kačarević ŽP, A. Elad, et al., Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery, Bioact. Mater., 14(2022), p. 152.
      [109]
      Z. Sheikh, N. Hamdan, Y. Ikeda, M. Grynpas, B. Ganss, and M. Glogauer, Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review, Biomater. Res., 21(2017), art. No. 9. doi: 10.1186/s40824-017-0095-5
      [110]
      P. Rider, Ž.P. Kačarević, A. Elad, et al., Analysis of a pure magnesium membrane degradation process and its functionality when used in a guided bone regeneration model in beagle dogs, Materials, 15(2022), No. 9, art. No. 3106. doi: 10.3390/ma15093106
      [111]
      S.E. Lapinsky and A.C. Easty, Electromagnetic interference in critical care, J. Crit. Care, 21(2006), No. 3, p. 267. doi: 10.1016/j.jcrc.2006.03.010
      [112]
      C. Zhang, Z. Li, J. Zhang, H. Tang, and H. Wang, Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives, J. Magnes. Alloys, 11(2023), No. 2, p. 425. doi: 10.1016/j.jma.2023.02.005
      [113]
      J. Wang, Y. Yuan, T. Chen, et al., Multi-solute solid solution behavior and its effect on the properties of magnesium alloys, J. Magnes. Alloys, (2022), No. 7, p. 1786. doi: 10.1016/j.jma.2022.06.015
      [114]
      J. Jiang, X. Geng, and X. Zhang, Stress corrosion cracking of magnesium alloys: A review, J. Magnes. Alloys,11(2023), No. 6, p. 1906. doi: 10.1016/j.jma.2023.05.011
      [115]
      R. Pandey, S. Tekumalla, and M. Gupta, Enhanced (X-band) microwave shielding properties of pure magnesium by addition of diamagnetic titanium micro-particulates, J. Magnes. Alloys, 770(2019), p. 473. doi: 10.1016/j.jallcom.2018.08.147
      [116]
      M. Qi, Pure magnesium rolled foil as loudspeaker diaphragm, Metall. Funct. Mater., 11(2004), No. 4, p. 33.

    Catalog


    • /

      返回文章
      返回