留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  495
  • HTML全文浏览量:  129
  • PDF下载量:  7
  • 被引次数: 0
Fengbo Sun, Rui Zhang, Fanchao Meng, Shuai Wang, Lujun Huang, and Lin Geng, Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2088-2101. https://doi.org/10.1007/s12613-024-2848-1
Cite this article as:
Fengbo Sun, Rui Zhang, Fanchao Meng, Shuai Wang, Lujun Huang, and Lin Geng, Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2088-2101. https://doi.org/10.1007/s12613-024-2848-1
引用本文 PDF XML SpringerLink
研究论文

超高杨氏模量Ti2C–Ti复合材料的互联通组织和弯曲行为


  • 通讯作者:

    黄陆军    E-mail: huanglujun@hit.edu.cn

文章亮点

  • (1) 发明了互连通结构高模量Ti2C–Ti复合材料的制备方法
  • (2) 阐明了50vol%Ti2C–Ti复合材料中双尺度Ti片层的形成机制
  • (3) 揭示了高模量Ti2C–Ti复合材料的弯曲变形行为
  • 钛基复合材料因其优异的比强度和高温性能在航空航天领域有广泛的应用前景,然而,现有钛基复合材料陶瓷相含量普遍较低,杨氏模量不足。为了大幅提高钛基复合材料的杨氏模量和强度,本文基于Hashin-Shtrikman理论设计了具有互连通微观结构的钛基复合材料。结果表明,当Ti2C含量达到50vol%时,原位反应产生了由Ti2C颗粒组成的互连通微观结构。在制备的复合材料中,颗粒内Ti层片呈双尺度分布,宽度分别为10 和230 nm。反应烧结过程中Ti2C颗粒内未反应Ti长大形成大尺寸Ti片层,降温过程中过饱和Ti2C内Ti原子直接析出形成小尺寸Ti片层。具有互连通微观结构的复合材料具有优异的性能,杨氏模量达174.3 GPa和抗弯强度达1014 GPa。与纯钛相比,复合材料的杨氏模量提高了55%,这归因于高Ti2C含量和互连通微观结构。高强度来自于强界面结合、互连Ti2C颗粒的载荷传递作用以及双尺度颗粒内Ti层片,其极大地降低了平均裂纹驱动力。原位加载弯曲试验表明,裂纹先在最大拉应力区域的Ti2C{001}解理面和Ti2C晶界处萌生。此外,颗粒间Ti晶粒能有效抑制裂纹扩展,从而防止复合材料发生脆性断裂。
  • Research Article

    Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus

    + Author Affiliations
    • To enhance the Young’s modulus (E) and strength of titanium alloys, we designed titanium matrix composites with interconnected microstructure based on the Hashin–Shtrikman theory. According to the results, the in-situ reaction yielded an interconnected microstructure composed of Ti2C particles when the Ti2C content reached 50vol%. With widths of 10 and 230 nm, the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti2C particles. The composites with interconnected microstructure attained superior properties, including E of 174.3 GPa and ultimate flexural strength of 1014 GPa. Compared with that of pure Ti, the E of the composite was increased by 55% due to the high Ti2C content and interconnected microstructure. The outstanding strength resulted from the strong interfacial bonding, load-bearing capacity of interconnected Ti2C particles, and bimodal intraparticle Ti lamellae, which minimized the average crack driving force. Interrupted flexural tests revealed preferential crack initiation along the {001} cleavage plane and grain boundary of Ti2C in the region with the highest tensile stress. In addition, the propagation can be efficiently inhibited by interparticle Ti grains, which prevented the brittle fracture of the composites.
    • loading
    • [1]
      F. Bonnet, V. Daeschler, and G. Petitgand, High modulus steels: New requirement of automotive market. How to take up challenge?, Can. Metall. Q., 53(2014), No. 3, p. 243. doi: 10.1179/1879139514Y.0000000144
      [2]
      Z.Y. Huang, X.X. Zhang, B.Y. Xiao, and Z.Y. Ma, Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite, J. Alloys Compd., 722(2017), p. 145. doi: 10.1016/j.jallcom.2017.06.065
      [3]
      X.H. Wang, H.H. Leng, B. Han, X. Wang, B. Hu, and H.W. Luo, Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel, Acta Mater., 176(2019), p. 84. doi: 10.1016/j.actamat.2019.06.052
      [4]
      H. Springer, R.A. Fernandez, M.J. Duarte, A. Kostka, and D. Raabe, Microstructure refinement for high modulus in situ metal matrix composite steels via controlled solidification of the system Fe–TiB2, Acta Mater., 96(2015), p. 47. doi: 10.1016/j.actamat.2015.06.017
      [5]
      M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2008.
      [6]
      J.D. Zhang, X.X. Zhang, M.F. Qian, Z.G. Jia, M. Imran, and L. Geng, Recent progress in particulate reinforced aluminum composites fabricated via spark plasma sintering: Microstructure and properties, Crit. Rev. Solid State Mater. Sci., (2023), p. 1.
      [7]
      W.T. Chen, W.B. Yu, P.C. Zhang, et al., Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlN x MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1406. doi: 10.1007/s12613-022-2427-2
      [8]
      Y. Bao, L.J. Huang, Q. An, et al., Insights into arc-assisted self-propagating high temperature synthesis of TiB2–TiC ceramic coating via wire-arc deposition, J. Eur. Ceram. Soc., 40(2020), No. 13, p. 4381. doi: 10.1016/j.jeurceramsoc.2020.05.005
      [9]
      H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1278. doi: 10.1007/s12613-022-2589-y
      [10]
      W.Q. Hu, F.M. Gong, S.C. Liu, et al., Microstructure refinement and second phase particle regulation of Mo−Y2O3 alloys by minor TiC additive, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2012. doi: 10.1007/s12613-022-2462-z
      [11]
      L. Huang, Q. An, L. Geng, et al., Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites, Adv. Mater., 33(2021), No. 6, art. No. 2000688. doi: 10.1002/adma.202000688
      [12]
      L.J. Huang, L. Geng, H.X. Peng, and J. Zhang, Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture, Scripta Mater., 64(2011), No. 9, p. 844. doi: 10.1016/j.scriptamat.2011.01.011
      [13]
      F.M. Zhang, S.L. Liu, P.P. Zhao, T.F. Liu, and J. Sun, Titanium/nanodiamond nanocomposites: Effect of nanodiamond on microstructure and mechanical properties of titanium, Mater. Des., 131(2017), p. 144. doi: 10.1016/j.matdes.2017.06.015
      [14]
      J.H. Wang, X.L. Guo, J.N. Qin, D. Zhang, and W.J. Lu, Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions, Mater. Sci. Eng. A, 628(2015), p. 366. doi: 10.1016/j.msea.2015.01.067
      [15]
      S. Wang, L.J. Huang, S. Jiang, et al., Microstructure evolution and improved properties of laminated titanium matrix composites with gradient equiaxed grains, Sci. China Technol. Sci., 63(2020), No. 12, p. 2687. doi: 10.1007/s11431-020-1619-7
      [16]
      Y.Y. Wu, Y. Wen, A.N. Guo, et al., Grain boundary and texture evolution of TiB/Ti–2Al–6Sn titanium matrix composite under electroshocking treatment, J. Mater. Res. Technol., 27(2023), p. 4305.
      [17]
      B.X. Liu, L.J. Huang, L. Geng, B. Wang, and X.P. Cui, Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites, Mater. Sci. Eng. A, 610(2014), p. 344.
      [18]
      M.A. Lagos, I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian, Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering, Mater. Sci. Eng. A, 655(2016), p. 44. doi: 10.1016/j.msea.2015.12.050
      [19]
      H. Singh, M. Hayat, Z. He, V.K. Peterson, R. Das, and P. Cao, In situ neutron diffraction observations of Ti–TiB composites, Composites Part A, 124(2019), art. No. 105501. doi: 10.1016/j.compositesa.2019.105501
      [20]
      D.R. Ni, L. Geng, J. Zhang, and Z.Z. Zheng, Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system, Scripta Mater., 55(2006), No. 5, p. 429. doi: 10.1016/j.scriptamat.2006.05.024
      [21]
      H.B. Feng, Y. Zhou, D.C. Jia, and Q.C. Meng, Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering, Compos. Sci. Technol., 64(2004), No. 16, p. 2495. doi: 10.1016/j.compscitech.2004.05.013
      [22]
      Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11(1963), No. 2, p. 127. doi: 10.1016/0022-5096(63)90060-7
      [23]
      F.B. Sun, S. Wang, X. Chen, et al., Improving flexural strength of Ti2C–Ti cermet by hot compressive deformation: Microstructure evolution and fracture behaviors, Sci. China Technol. Sci., 66(2023), No. 11, p. 3298. doi: 10.1007/s11431-022-2339-4
      [24]
      A.I. Gusev, Phase equilibria, phases and compounds in the Ti–C system, Russ. Chem. Rev., 71(2002), No. 6, p. 439. doi: 10.1070/RC2002v071n06ABEH000721
      [25]
      P. Wanjara, R.A.L. Drew, J. Root, and S. Yue, Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites, Acta Mater., 48(2000), No. 7, p. 1443. doi: 10.1016/S1359-6454(99)00453-X
      [26]
      T.P. Johnson, J.W. Brooks, and M.H. Loretto, Mechanical properties of a Ti-based metal matrix composite produced by a casting route, Scr. Metall. Mater., 25(1991), No. 4, p. 785. doi: 10.1016/0956-716X(91)90225-P
      [27]
      M. Radhakrishnan, M. Hassan, B. Long, D. Otazu, T. Lienert, and O. Anderoglu, Microstructures and properties of Ti/TiC composites fabricated by laser-directed energy deposition, Addit. Manuf., 46(2021), art. No. 102198.
      [28]
      J.D. Wang, Y.Z. Zeng, X.P. Qi, et al., Graded microstructure and properties of TiCp/Ti6Al4V composites manufactured by laser melting deposition, Ceram. Int., 48(2022), No. 5, p. 6985. doi: 10.1016/j.ceramint.2021.11.256
      [29]
      Z.J. Wei, L. Cao, H.W. Wang, and C.M. Zou, Microstructure and mechanical properties of TiC/Ti–6Al–4V composites processed by in situ casting route, Mater. Sci. Technol., 27(2011), No. 8, p. 1321. doi: 10.1179/026708310X12699498462922
      [30]
      S. Zhao, Y.J. Xu, C.L. Pan, L.H. Liang, and X.G. Wang, Microstructural modeling and strengthening mechanism of TiB/Ti–6Al–4V discontinuously-reinforced titanium matrix composite, Materials, 12(2019), No. 5, art. No. E827. doi: 10.3390/ma12050827
      [31]
      L.J. Huang, L. Geng, and H.X. Peng, Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?, Prog. Mater. Sci., 71(2015), p. 93. doi: 10.1016/j.pmatsci.2015.01.002
      [32]
      K. Vasanthakumar and S.R. Bakshi, Effect of C/Ti ratio on densification, microstructure and mechanical properties of TiC x prepared by reactive spark plasma sintering, Ceram. Int., 44(2018), No. 1, p. 484. doi: 10.1016/j.ceramint.2017.09.202
      [33]
      S.F. Li, B. Sun, H. Imai, and K. Kondoh, Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti–VGCFs system, Carbon, 61(2013), p. 216. doi: 10.1016/j.carbon.2013.04.088
      [34]
      L.C. Xie, Q. Feng, Y. Wen, L.Q. Wang, C.H. Jiang, and W.J. Lu, Surface microstructure characterization on shot peened (TiB + TiC)/Ti–6Al–4V by Rietveld whole pattern fitting method, J. Mater. Res., 31(2016), No. 15, p. 2291. doi: 10.1557/jmr.2016.256
      [35]
      R.A. Young and D.B. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Crystallogr., 15(1982), No. 4, p. 430. doi: 10.1107/S002188988201231X
      [36]
      L.J. Huang, S. Wang, L. Geng, B. Kaveendran, and H.X. Peng, Low volume fraction in situ (Ti5Si3 + Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti–SiC system, Compos. Sci. Technol., 82(2013), p. 23. doi: 10.1016/j.compscitech.2013.03.025
      [37]
      F.B. Sun, L.J. Huang, R. Zhang, et al. , In-situ synthesis and superhigh modulus of network structured TiC/Ti composites based on diamond-Ti system, J. Alloys Compd., 834(2020), art. No. 155248. doi: 10.1016/j.jallcom.2020.155248
      [38]
      B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans., 1(1970), No. 7, p. 1987. doi: 10.1007/BF02642799
      [39]
      T.T.T. Trang, S.Y. Lee, Y.U. Heo, et al., Improved hot ductility of an as-cast high Mn TWIP steel by direct implementation of an MnS-containing master alloy, Scripta Mater., 215(2022), art. No. 114685. doi: 10.1016/j.scriptamat.2022.114685
      [40]
      T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993.
      [41]
      D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2021.
      [42]
      X.Y. Wang, S.P. Li, Y.F. Han, G.F. Huang, J.W. Mao, and W.J. Lu, Visual assessment of special rod-like α-Ti precipitates within the in situ TiC crystals and the mechanical responses of titanium matrix composites, Composites Part B, 230(2022), art. No. 109511. doi: 10.1016/j.compositesb.2021.109511
      [43]
      M. Kato, T. Fujii, and S. Onaka, Elastic strain energies of sphere, plate and needle inclusions, Mater. Sci. Eng. A, 211(1996), No. 1-2, p. 95. doi: 10.1016/0921-5093(95)10091-1
      [44]
      M. Guemmaz, A. Mosser, R. Ahujab, and B. Johansson, Elastic properties of sub-stoichiometric titanium carbides, Solid State Commun., 110(1999), No. 6, p. 299. doi: 10.1016/S0038-1098(99)00091-5
      [45]
      A. Jain, S.P. Ong, G. Hautier, et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002. doi: 10.1063/1.4812323
      [46]
      L.X. Cheng, Z.P. Xie, G.W. Liu, W. Liu, and W.J. Xue, Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition, J. Eur. Ceram. Soc., 32(2012), No. 12, p. 3399. doi: 10.1016/j.jeurceramsoc.2012.04.017
      [47]
      W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 19(2004), No. 1, p. 3. doi: 10.1557/jmr.2004.19.1.3
      [48]
      Q. An, L.J. Huang, Q. Qian, et al., Insights into in situ TiB/dual-phase Ti alloy interface and its high load-bearing capacity, J. Mater. Sci. Technol., 119(2022), p. 156. doi: 10.1016/j.jmst.2021.12.035
      [49]
      J.B. Ferguson, X. Thao, P.K. Rohatgi, K. Cho, and C.S. Kim, Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites, Scripta Mater., 83(2014), p. 45. doi: 10.1016/j.scriptamat.2014.04.004
      [50]
      A. Shaga, P. Shen, L.G. Xiao, R.F. Guo, Y.B. Liu, and Q.C. Jiang, High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure, Mater. Sci. Eng. A, 708(2017), p. 199. doi: 10.1016/j.msea.2017.09.114
      [51]
      M. Yi, X.Z. Zhang, G.W. Liu, B. Wang, H.C. Shao, and G.J. Qiao, Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti–6Al–4V composites from Ti–B4C–C and Ti–TiB2–TiC systems, Mater. Charact., 140(2018), p. 281. doi: 10.1016/j.matchar.2018.04.010
      [52]
      B.V. Radhakrishna Bhat, J. Subramanyam, and V.V. Bhanu Prasad, Preparation of Ti–TiB–TiC & Ti–TiB composites by in situ reaction hot pressing, Mater. Sci. Eng. A, 325(2002), No. 1-2, p. 126. doi: 10.1016/S0921-5093(01)01412-5
      [53]
      H. Singh, M. Hayat, H.Z. Zhang, R. Das, and P. Cao, Effect of TiB2 content on microstructure and properties of in situ Ti–TiB composites, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 915. doi: 10.1007/s12613-019-1797-6
      [54]
      M.G. Elkhateeb and Y.C. Shin, Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface, Mater. Des., 155(2018), p. 161. doi: 10.1016/j.matdes.2018.05.054
      [55]
      T. Liang, M. Ashton, K. Choudhary, et al., Properties of Ti/TiC interfaces from molecular dynamics simulations, J. Phys. Chem. C, 120(2016), No. 23, p. 12530. doi: 10.1021/acs.jpcc.6b02763
      [56]
      K. Matsunaga, T. Sasaki, N. Shibata, T. Mizoguchi, T. Yamamoto, and Y. Ikuhara, Bonding nature of metal/oxide incoherent interfaces by first-principles calculations, Phys. Rev. B, 74(2006), No. 12, art. No. 125423. doi: 10.1103/PhysRevB.74.125423
      [57]
      D. Matsunaka and Y. Shibutani, Electronic states and adhesion properties at metal/MgO incoherent interfaces: First-principles calculations, Phys. Rev. B, 77(2008), No. 16, art. No. 165435. doi: 10.1103/PhysRevB.77.165435
      [58]
      D. Hu, T.P. Johnson, and M.H. Loretto, Titanium precipitation in substoichiometric TiC particles, Scr. Metall. Mater., 30(1994), No. 8, p. 1015. doi: 10.1016/0956-716X(94)90547-9

    Catalog


    • /

      返回文章
      返回