留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(16)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  612
  • HTML全文浏览量:  232
  • PDF下载量:  77
  • 被引次数: 0
Yanxiang Liu, Kexin Jiao, Jianliang Zhang, Cui Wang, Lei Zhang,  and Xiaoyue Fan, Research progress and future prospects in the service security of key blast furnace equipment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2121-2135. https://doi.org/10.1007/s12613-024-2850-7
Cite this article as:
Yanxiang Liu, Kexin Jiao, Jianliang Zhang, Cui Wang, Lei Zhang,  and Xiaoyue Fan, Research progress and future prospects in the service security of key blast furnace equipment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2121-2135. https://doi.org/10.1007/s12613-024-2850-7
引用本文 PDF XML SpringerLink
特约综述

炼铁高炉关键装备安全服役研究进展与展望


  • 通讯作者:

    焦克新    E-mail: jiaokexin@ustb.edu.cn

文章亮点

  • (1) 诠释了高炉关键装备的传热特征,解析了高炉炉体并联水管间冷却水量分配不均匀现象;
  • (2) 综述了高炉用冷却器、风口及耐火材料等三大关键装备的应用现状及长寿控制技术;
  • (3) 提出了新形势条件下高炉关键装备材料安全服役及精准防控研究方向。
  • 高炉炼铁关键装备的安全服役是保障高炉稳定顺行低碳冶炼的前提。本文从传热基本原理角度阐释了高炉关键装备的传热特征,基于水动力学特性分析了高炉炉体并联水管间冷却水量分配不均匀现象,明确了提高高炉冷却强度的可行途径。然后从制备工艺、性能指标、关键问题和破损特征等多个维度综述了高炉用冷却器、风口及耐火材料等三大关键装备的应用现状,提出了高炉关键装备在高温服役过程中的优化控制技术,包括高炉操作维护技术、高炉自修复技术和高炉全生命周期管控技术,最后对新形势条件下高炉关键装备材料安全服役及精准防控研究进行了展望。
  • Review

    Research progress and future prospects in the service security of key blast furnace equipment

    + Author Affiliations
    • The safety and longevity of key blast furnace (BF) equipment determine the stable and low-carbon production of iron. This paper presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles, discusses the feasible methods for the improvement of BF cooling intensity, and reviews the preparation process, performance, and damage characteristics of three key equipment pieces: coolers, tuyeres, and hearth refractories. Furthermoere, to attain better control of these critical components under high-temperature working conditions, we propose the application of optimized technologies, such as BF operation and maintenance technology, self-repair technology, and full-lifecycle management technology. Finally, we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.
    • loading
    • [1]
      Y.B. Zong, Z.Y. Guo, J.L. Zhang, et al., Formation and modification of cinder in tuyere bird’s nest area of blast furnace: A review, Fuel, 358(2024), art. No. 130236. doi: 10.1016/j.fuel.2023.130236
      [2]
      J. Perpiñán, M. Bailera, B. Peña, L.M. Romeo, and V. Eveloy, High oxygen and SNG injection in blast furnace ironmaking with power to gas integration and CO2 recycling, J. Clean. Prod., 405(2023), art. No. 137001. doi: 10.1016/j.jclepro.2023.137001
      [3]
      X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the World, J. Clean. Prod., 306(2021), art. No. 127259. doi: 10.1016/j.jclepro.2021.127259
      [4]
      L. Wang, P.M. Guo, L.B. Kong, and P. Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1922. doi: 10.1007/s12613-022-2478-4
      [5]
      C.Y. Xu, Research on Reduction Behavior of Fluxed Pellets Underhydrogen-Rich Conditions in Blast Furnace [Dissertation], University of Science and Technology Beijing, Beijing, 2022, p. 20.
      [6]
      Z.J. Hu, Y.M. Chen, and Q.Z. Ju, Baosteel’s BF long campaign production practice and exploration, Ironmaking, 36(2017), No. 6, p. 1.
      [7]
      X.F. Wang, G.J. Sun, and J.M. Zhu, Long campaign experiences of Baosteel’s No.3 blast furnace from corrosion investigation, Ironmaking, 35(2016), No. 5, p. 17.
      [8]
      W.X. Wang, Review on development of Chinese ironmaking technology in 2017, [in] 2018 Chinese Ironmaking Production Technology and Iromaking Academic Anual Meeting Proceedings, Hangzhou, 2018, p. 20.
      [9]
      Z.Y. Xiang, Study of long campaign life technology of blast furnace hearth in foreign countries, Ironmaking, 32(2013), No.5, p.53
      [10]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, and T.J. Yang, Analysis of key issues on longevity of blast furnace hearth, Iron Steel, 55(2020), No. 8, p.193.
      [11]
      W.T. Zhu, Research on the Structural Design and Performance Optimization of Low-Carbon Longlife Tuyere for Blast Furnace [Disseration], University of Science and Technology Beijing, Beijing, 2024, p. 48.
      [12]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, Y. Deng, and C.L. Chen, Cooling phenomena in blast furnace hearth, J. Iron Steel Res. Int., 25(2018), No. 10, p. 1010. doi: 10.1007/s42243-018-0160-x
      [13]
      S.B. Kuang, Z.Y. Li, and A.B. Yu, Review on modeling and simulation of blast furnace, Steel Res. Int., 89(2018), No. 1, art. No. 1700071. doi: 10.1002/srin.201700071
      [14]
      B.Y. Guo, D. Maldonado, P. Zulli, and A.B. Yu, CFD modelling of liquid metal flow and heat transfer in blast furnace hearth, ISIJ Int., 48(2008), No. 12, p. 1676. doi: 10.2355/isijinternational.48.1676
      [15]
      Y. Kaymak, H. Bartusch, T. Hauck, J. Mernitz, H. Rausch, and R.S. Lin, Multiphysics model of the hearth lining state, Steel Res. Int., 91(2020), No. 11, art. No. 2000055. doi: 10.1002/srin.202000055
      [16]
      Q. Liu and S.S. Cheng, Heat transfer and thermal deformation analyses of a copper stave used in the belly and lower shaft area of a blast furnace, Int. J. Therm. Sci., 100(2016), p. 202. doi: 10.1016/j.ijthermalsci.2015.09.026
      [17]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, and H.B. Jiang, Cooling efficiency and cooling intensity of cooling staves in blast furnace hearth, Metall. Res. Technol., 116(2019), No. 4, art. No. 414. doi: 10.1051/metal/2019003
      [18]
      L.J. Wu, W.G. Zhou, H.E. Cheng, Y.L. Su, X.J. Li, and C.Y. Song, The study of cooling channel optimization in blast furnace cast steel stave based on heat transfer analysis, Int. J. Adv. Manuf. Technol., 29(2006), No. 1-2, p. 64. doi: 10.1007/s00170-004-2405-z
      [19]
      . L.Y. Hao, K. Wang, and K.X. Jiao, Numerical simulation of homogeneous water supply of BF cooling system, Ironmaking, 38(2019), No. 6, p. 24.
      [20]
      K.X. Jiao, J.L. Zhang, G.W. Wang, and C.L. Chen, Investigation of water distribution features among pipes in BF hearth, Metall. Res. Technol., 116(2019), No. 1, art. No. 121. doi: 10.1051/metal/2018052
      [21]
      H. Zhang, K.X. Jiao, J.L. Zhang, and Y.B. Chen, A new method for evaluating cooling capacity of blast furnace cooling stave, Ironmaking Steelmaking, 46(2019), No. 7, p. 671. doi: 10.1080/03019233.2018.1454388
      [22]
      H. Zhang, K.X. Jiao, J.L. Zhang, and J.P. Liu, Comparisons of the microstructures and micro-mechanical properties of copper/steel explosive-bonded wave interfaces, Mater. Sci. Eng. A, 756(2019), p. 430. doi: 10.1016/j.msea.2019.04.064
      [23]
      H.B. Ma, K.X. Jiao, C. Wang, et al., Investigation of formation and shedding behavior of slag crust in a large blast furnace with copper stave: Flow properties and crystallization characteristics, J. Sustainable Metall., 7(2021), No. 2, p. 506. doi: 10.1007/s40831-021-00355-1
      [24]
      T.L. Gao, K.X. Jiao, J.L. Zhang, and Y.B. Zong, Study on non-uniform wear of blast furnace copper stave, Min. Metall., 30(2021), No. suppl. 2, p. 113.
      [25]
      H.B. Ma, K.X. Jiao, J.L. Zhang, L. Zhang, and X.Y. Fan, Phase composition and formation mechanism of slag crust in blast furnace, ISIJ Int., 60(2020), No. 11, p. 2357. doi: 10.2355/isijinternational.ISIJINT-2020-113
      [26]
      C.P. Yeh, C.K. Ho, and R.J. Yang, Conjugate heat transfer analysis of copper staves and sensor bars in a blast furnace for various refractory lining thickness, Int. Commun. Heat Mass Transf, 39(2012), No. 1, p. 58. doi: 10.1016/j.icheatmasstransfer.2011.09.012
      [27]
      H. Zhang, K.X. Jiao, J.L. Zhang, and J.P. Liu, Microstructure and mechanical properties investigations of copper–steel composite fabricated by explosive welding, Mater. Sci. Eng. A, 731(2018), p. 278. doi: 10.1016/j.msea.2018.06.051
      [28]
      S.B. Tang, H.W Li, J.H. Liang, X.M. Zhao, W. Zheng, and W.W. Liu, Production practice of high proportion pellet in no.5 blast furnace of TISCO, Ironmaking, 33(2014), p.30.
      [29]
      T.L. Gao, K.X. Jiao, J.L. Zhang, and H.B. Ma, Melting erosion failure mechanism of tuyere in blast furnace, ISIJ Int., 61(2021), No. 1, p. 71. doi: 10.2355/isijinternational.ISIJINT-2020-138
      [30]
      . B. Kumar Das, Reduction in heat losses through air tuyeres in blast furnaces at DSP, Mater. Today Proc., 66(2022), p. 3944. doi: 10.1016/j.matpr.2022.07.435
      [31]
      J. Zhang, R.D. Wang, R. Hu, et al., Failure mode and mechanism of a blast furnace tuyere, Eng. Fail. Anal., 137(2022), art. No. 106294. doi: 10.1016/j.engfailanal.2022.106294
      [32]
      G.S. Li, P.Y. Huang, P. Cheng, et al., Analysis of the failure mechanism of a blast furnace tuyere sleeve with protective coating, Eng. Fail. Anal., 153(2023), art. No. 107537. doi: 10.1016/j.engfailanal.2023.107537
      [33]
      J.J. Sun, C.G. Bi, C. Chen, Z.X. Di, H.M. Long, and J.X. Li, Study on wear mechanism at the front end of tuyere small sleeve in blast furnace, Res. Iron Steel, 45(2017), No. 4, p.46.
      [34]
      T.L. Gao, K.X. Jiao, H.B. Ma, and J.L. Zhang, Analysis of tuyere failure categories in 5800 m3 blast furnace, Ironmaking Steelmaking, 48(2021), No. 5, p. 586. doi: 10.1080/03019233.2020.1823199
      [35]
      Z.J. Liu, J.L. Zhang, H.B. Zuo, and T.J. Yang, Recent progress on long service life design of Chinese blast furnace hearth, ISIJ Int., 52(2012), No. 10, p. 1713. doi: 10.2355/isijinternational.52.1713
      [36]
      R.S. Shou, Longevity Technology of Blast Furnace in WISCO, Metallurgical Industry Press, Beijing, 2009.
      [37]
      H.B. Zuo, C. Wang, J.L. Zhang, Y.A. Zhao, and K.X. Jiao, Application status and important technical indexes of BF hearth refractory, Iron Steel, 50(2015), No. 2, p. 1.
      [38]
      J.L. Zhang, Z.Y, Wang, K.X. Jiao, C. Wang, and Y.A. Zhao, Slag erosion resistance and hanging mechanism for the refractory in blast furnace hearth, Iron Steel, 50(2015), No. 11, p. 27.
      [39]
      N. Prompt and E. Ouedraogo, High temperature mechanical characterisation of an alumina refractory concrete for blast furnace main trough, J. Eur. Ceram. Soc., 28(2008), No. 15, p. 2859. doi: 10.1016/j.jeurceramsoc.2008.04.031
      [40]
      Y. Deng, J.L. Zhang, and K.X. Jiao, Dissolution mechanism of carbon brick into molten iron, ISIJ Int., 58(2018), No. 5, p. 815. doi: 10.2355/isijinternational.ISIJINT-2017-659
      [41]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, Z.Z. Liu, Y. Deng, and X.Y. Fan, Corrosion mechanism of carbon brick in the blast furnace hearth by potassium, Metall. Res. Technol., 115(2018), No. 1, art. No. 109. doi: 10.1051/metal/2017060
      [42]
      Z.Y. Guo, J.L. Zhang, K.X. Jiao, Y.B. Zong, and Z.Y. Wang, Occurrence state and behavior of carbon brick brittle in a large dissected blast furnace hearth, Steel Res. Int., 92(2021), No. 11, art. No. 2100273. doi: 10.1002/srin.202100273
      [43]
      K.X. Jiao, X.Y. Fan, J.L. Zhang, K.D. Wang, and Y.A. Zhao, Corrosion behavior of alumina–carbon composite brick in typical blast furnace slag and iron, Ceram. Int., 44(2018), No. 16, p. 19981. doi: 10.1016/j.ceramint.2018.07.265
      [44]
      Z.Y. Wang, Study on Erosion Behavior of Blast Furnace Hearth Carbon Brick in Molten Iron [Disseration], University of Science and Technology Beijing, 2022: p. 63.
      [45]
      P. Barral, L.J. Pérez-Pérez, and P. Quintela, Numerical simulation of the transient heat transfer in a blast furnace main trough during its complete campaign cycle, Int. J. Therm. Sci., 173(2022), art. No. 107349. doi: 10.1016/j.ijthermalsci.2021.107349
      [46]
      M. Roche, M. Helle, J. van der Stel, G. Louwerse, J. Storm, and H. Saxén, Drainage model of multi-taphole blast furnaces, Metall. Mater. Trans. B, 51(2020), No. 4, p. 1731. doi: 10.1007/s11663-020-01857-1
      [47]
      L. Shao and H. Saxén, A simulation study of two-liquid flow in the taphole of the blast furnace, ISIJ Int., 53(2013), No. 6, p. 988. doi: 10.2355/isijinternational.53.988
      [48]
      S. Vázquez-Fernández, A. García-Lengomín Pieiga, C. Lausín-Gónzalez, and P. Quintela, Mathematical modelling and numerical simulation of the heat transfer in a trough of a blast furnace, Int. J. Therm. Sci., 137(2019), p. 365. doi: 10.1016/j.ijthermalsci.2018.11.025
      [49]
      X.Y. Fan, K.X. Jiao, J.L. Zhang, R.Q. Cao, R.S. He, and K.D. Wang, Study on physicochemical properties of Al2O3–SiC–C castable for blast furnace, Ceram. Int., 45(2019), No. 11, p. 13903. doi: 10.1016/j.ceramint.2019.04.088
      [50]
      H. Merten, S. Wirtz, H. Bartusch, et al., Analysis of the impact of carbon dissolution and energy transport on the flow in the hearth of an ironmaking blast furnace by transient CFD simulations, Therm. Sci. Eng. Prog., 39(2023), art. No. 101747. doi: 10.1016/j.tsep.2023.101747
      [51]
      J. Stec, R. Smulski, S. Nagy, K. Szyszkiewicz-Warzecha, J. Tomala, and R. Filipek, Permeability of carbon refractory materials used in a blast furnace hearth, Ceram. Int., 47(2021), No. 12, p. 16538. doi: 10.1016/j.ceramint.2021.02.223
      [52]
      F. Bambauer, S. Wirtz, V. Scherer, and H. Bartusch, Transient DEM–CFD simulation of solid and fluid flow in a three dimensional blast furnace model, Powder Technol., 334(2018), p. 53. doi: 10.1016/j.powtec.2018.04.062
      [53]
      K.X. Jiao, C. Wang, J.L. Zhang, S. Ren, and D.Y. E, Heat transfer evolution process in hearth based on blast furnace dissection, JOM, 72(2020), No. 5, p. 1935. doi: 10.1007/s11837-020-04090-y
      [54]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, F. Liu, and L.S. Liang, Formation mechanism of the graphite-rich protective layer in blast furnace hearths, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 16. doi: 10.1007/s12613-016-1206-3
      [55]
      S. Meng, K.X. Jiao, J.L. Zhang, et al., Dissection study of the deadman in a commercial blast furnace hearth, Fuel Process. Technol., 221(2021), art. No. 106916. doi: 10.1016/j.fuproc.2021.106916
      [56]
      K.X. Jiao, J.L. Zhang, Q.F. Hou, Z.J. Liu, and G.W. Wang, Analysis of the relationship between productivity and hearth wall temperature of a commercial blast furnace and model prediction, Steel Res. Int., 88(2017), No. 9, art. No. 1600475. doi: 10.1002/srin.201600475
      [57]
      F.M. Zhang, Design and operation control for long campaign life of blast furnaces, J. Iron Steel Res. Int., 20(2013), No. 9, p. 53. doi: 10.1016/S1006-706X(13)60156-9

    Catalog


    • /

      返回文章
      返回