留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(13)

数据统计

分享

计量
  • 文章访问数:  457
  • HTML全文浏览量:  179
  • PDF下载量:  44
  • 被引次数: 0
Junyi Xiang, Xi Lu, Luwei Bai, Hongru Rao, Sheng Liu, Qingyun Huang, Shengqin Zhang, Guishang Pei,  and Xuewei Lü, Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1839-1848. https://doi.org/10.1007/s12613-024-2851-6
Cite this article as:
Junyi Xiang, Xi Lu, Luwei Bai, Hongru Rao, Sheng Liu, Qingyun Huang, Shengqin Zhang, Guishang Pei,  and Xuewei Lü, Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1839-1848. https://doi.org/10.1007/s12613-024-2851-6
引用本文 PDF XML SpringerLink
研究论文

FeV2O4和FeCr2O4的非等温氧化动力学与反应机理研究


  • 通讯作者:

    向俊一    E-mail: xiangjunyi126@126.com

    裴贵尚    E-mail: peiguishang@snu.ac.kr

文章亮点

  • (1) 采用热分析技术研究了钒铁尖晶石(FeV2O4)和铬铁尖晶石(FeCr2O4)的非等温氧化行为。
  • (2) 借助KAS方法获得了FeV2O4和FeCr2O4非等温氧化的表观活化能,同时利用Malek法对其氧化机理函数进行了分析,进而比较并分析了两者的氧化动力学差异。
  • (3) 采用高温原位XRD技术对FeV2O4和FeCr2O4在氧化过程的物相转变规律进行了系统研究,并在此基础上推导了两者的氧化机理。
  • 钒铁尖晶石(FeV2O4)和铬铁尖晶石(FeCr2O4)的高温氧化行为对尖晶石类新能源材料在高温环境下的服役性能具有显著影响,同时对钒渣及高铬钒渣中钒铬的清洁提取研究也具有重大意义。因此,本文通过高温固相反应方法合成了FeV2O4和FeCr2O4材料,并利用热重分析法和高温原位X射线衍射技术(XRD)研究了两种材料在空气气氛下的非等温氧化行为。通过Kissinger-Akahira-Sunose (KAS)法和Malek法分别计算了两种材料氧化反应的表观活化能和机理函数。结果表明,FeV2O4和FeCr2O4的氧化表观活化能均随转化率的提升逐渐增大,且FeV2O4的表观活化能显著高于FeCr2O4。两者在氧化机理上均呈现出复杂性,氧化过程均可细分为四个反应阶段。其中FeV2O4的整个氧化过程符合化学反应模型,而FeCr2O4的氧化过程则逐渐从三维扩散模型过渡到化学反应模型。高温原位XRD结果进一步表明,FeV2O4和FeCr2O4在氧化过程中均生成了大量中间产物。对于FeV2O4,其最终氧化产物为FeVO4和V2O5;而对于FeCr2O4,其最终氧化产物为Fe2O3和Cr2O3
  • Research Article

    Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism

    + Author Affiliations
    • High-temperature oxidation behavior of ferrovanadium (FeV2O4) and ferrochrome (FeCr2O4) spinels is crucial for the application of spinel as an energy material, as well as for the clean usage of high-chromium vanadium slag. Herein, the nonisothermal oxidation behavior of FeV2O4 and FeCr2O4 prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction (XRD) at heating rates of 5, 10, and 15 K/min. The apparent activation energy was determined by the Kissinger–Akahira–Sunose (KAS) method, whereas the mechanism function was elucidated by the Malek method. Moreover, in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV2O4 and FeCr2O4. The results reveal a gradual increase in the overall apparent activation energies for FeV2O4 and FeCr2O4 during oxidation. Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound. The oxidation mechanisms of FeV2O4 and FeCr2O4 are complex and have distinct mechanisms. In particular, the chemical reaction controls the entire oxidation process for FeV2O4, whereas that for FeCr2O4 transitions from a three-dimensional diffusion model to a chemical reaction model. According to the in-situ XRD results, numerous intermediate products are observed during the oxidation process of both compounds, eventually resulting in the final products FeVO4 and V2O5 for FeV2O4 and Fe2O3 and Cr2O3 for FeCr2O4, respectively.
    • loading
    • [1]
      V. Tsurkan, H.A.K. von Nidda, J. Deisenhofer, P. Lunkenheimer, and A. Loidl, On the complexity of spinels: Magnetic, electronic, and polar ground states, Phys. Rep., 926(2021), p. 1. doi: 10.1016/j.physrep.2021.04.002
      [2]
      A. Sundaresan and N. Ter-Oganessian, Magnetoelectric and multiferroic properties of spinels, J. Appl. Phys., 129(2021), art. No. 060901. doi: 10.1063/5.0035825
      [3]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [4]
      N. Nishiguchi and M. Onoda, A pseudotetramer in the geometrically frustrated spinel system CdV2O4, J. Phys.: Condens. Matter, 14(2002), No. 28, p. L551. doi: 10.1088/0953-8984/14/28/105
      [5]
      R. Batulin, M. Cherosov, A. Kiiamov, et al., Synthesis and single crystal growth by floating zone technique of FeCr2O4 multiferroic spinel: Its structure, composition, and magnetic properties, Magnetochemistry, 8(2022), No. 8, p. 86. doi: 10.3390/magnetochemistry8080086
      [6]
      G.S. Pei, C. Pan, D.P. Zhong, J.Y. Xiang, and X.W. Lv, Crystal structure, phase transitions, and thermodynamic properties of magnesium metavanadate (MgV2O6), J. Magnesium Alloys, 12(2024), No. 4, p. 1449. doi: 10.1016/j.jma.2022.05.011
      [7]
      S. Nishihara, W. Doi, H. Ishibashi, Y. Hosokoshi, X.M. Ren, and S. Mori, Appearance of magnetization jumps in magnetic hysteresis curves in spinel oxide FeV2O4, J. Appl. Phys., 107(2010), No. 9, art. No. 09A504.
      [8]
      L. Yang, Y.R. Zhang, C.P. Wu, et al., A novel high-selectivity mixed potential ammonia gas sensor based on FeCr2O4 sensing electrode, J. Electroanal. Chem., 924(2022), art. No. 116849. doi: 10.1016/j.jelechem.2022.116849
      [9]
      H.F. Shang and D.G. Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 909. doi: 10.1007/s12613-022-2482-8
      [10]
      B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
      [11]
      G. Ghanashyam and H.K. Jeong, Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor, J. Energy Storage, 33(2021), art. No. 102150. doi: 10.1016/j.est.2020.102150
      [12]
      H. Zhang, G.F. Qian, T.Q. Yu, J.L. Chen, L. Luo, and S.B. Yin, Interface Engineering of Ni3Fe and FeV2O4 coupling with carbon-coated mesoporous nanosheets for boosting overall water splitting at 1500 mA·cm–2, ACS Sustainable Chem. Eng., 9(2021), No. 24, p. 8249. doi: 10.1021/acssuschemeng.1c02293
      [13]
      I.V.B. Maggay, L.M.Z. De Juan, J.S. Lu, et al., Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries, Sci. Rep., 8(2018), art. No. 8839. doi: 10.1038/s41598-018-27083-z
      [14]
      T.R. Kuo, W.T. Chen, H.J. Liao, et al., Improving hydrogen evolution activity of earth-abundant cobalt-doped iron pyrite catalysts by surface modification with phosphide, Small, 13(2017), No. 8, art. No. 1603356. doi: 10.1002/smll.201603356
      [15]
      S. Yougbare, T.K. Chang, S.H. Tan, et al., Antimicrobial gold nanoclusters: Recent developments and future perspectives, Int. J. Mol. Sci., 20(2019), No. 12, art. No. E2924. doi: 10.3390/ijms20122924
      [16]
      S. Yougbaré, H.L. Chou, C.H. Yang, et al., Facet-dependent gold nanocrystals for effective photothermal killing of bacteria, J. Hazard. Mater., 407(2021), art. No. 124617. doi: 10.1016/j.jhazmat.2020.124617
      [17]
      B. Janani, S. Swetha, A. Syed, et al., Spinel FeV2O4 coupling on nanocube-like Bi2O3 for high performance white light photocatalysis and antibacterial applications, J. Alloys Compd., 887(2021), art. No. 161432. doi: 10.1016/j.jallcom.2021.161432
      [18]
      A. Chinnathambi, Synthesis and characterization of spinel FeV2O4 coupled ZnO nanoplates for boosted white light photocatalysis and antibacterial applications, J. Alloys Compd., 890(2022), art. No. 161742. doi: 10.1016/j.jallcom.2021.161742
      [19]
      A. Abbasi, A.H. Keihan, M.A. Golsefidi, M. Rahimi-Nasrabadi, and H. Khojasteh, Synthesis, characterization and photocatalytic activity of FeCr2O4 and FeCr2O4/Ag nanocomposites, J. Nanostruct., 10(2020), No. 3, p. 518.
      [20]
      A.V. Borhade, D.R. Tope, J.A. Agashe, and S.S. Kushare, Synthesis, characterization and photocatalytic study of FeCr2O4@ZnO@MgO core–shell nanoparticle, J. Water Environ. Nanotechnol., 6(2021), No. 2, p. 164.
      [21]
      C.P.J. Van Vuuren and P.P. Stander, The oxidation of FeV2O4 by oxygen in a sodium carbonate mixture, Miner. Eng., 14(2001), No. 7, p. 803. doi: 10.1016/S0892-6875(01)00076-0
      [22]
      A. Wold, D.B. Rogers, R. Arnott, and N. Menyuk, Vanadium iron oxides, J. Appl. Phys., 33(1962), p. 1208. doi: 10.1063/1.1728662
      [23]
      F. Paborji, M.S. Afarani, A.M. Arabi, and M. Ghahari, Solution combustion synthesis of FeCr2O4 powders for pigment applications: Effect of fuel type, Int. J. Appl. Ceram. Technol., 19(2022), No. 5, p. 2406.
      [24]
      Y. Hidaka, T. Anraku, and N. Otsuka, Deformation and fracture behavior of surface oxide scale on Fe–13Cr alloy in hot-rolling process, Mater. Sci. Forum, 522-523(2006), p. 461. doi: 10.4028/www.scientific.net/MSF.522-523.461
      [25]
      X. Zhang, B. Xie, J. Diao, and X.J. Li, Nucleation and growth kinetics of spinel crystals in vanadium slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 147. doi: 10.1179/1743281211Y.0000000079
      [26]
      H.G. Wang, M.Y. Wang, and X.W. Wang, Leaching behaviour of chromium during vanadium extraction from vanadium slag, Miner. Process. Extr. Metall., 124(2015), No. 3, p. 127. doi: 10.1179/1743285514Y.0000000085
      [27]
      H.Y. Li, H.X. Fang, K. Wang, et al., Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching, Hydrometallurgy, 156(2015), p. 124. doi: 10.1016/j.hydromet.2015.06.003
      [28]
      S. Nakamura and A. Fuwa, Distinct evidence of orbital order in spinel oxide FeV2O4 by 57Fe mössbauer spectroscopy, J. Phys. Soc. Jpn., 85(2016), No. 1, art. No. 014702. doi: 10.7566/JPSJ.85.014702
      [29]
      S. Nakamura, K. Tasaki, and T. Katsufuji, Competitive local structure in mixed vanadium spinel Fe1−xMnxV2O4, [in] Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019 ), Okayama, 2019.
      [30]
      G. Cohn, Reactions in the solid state, Chem. Rev., 42(1948), No. 3, p. 527. doi: 10.1021/cr60133a002
      [31]
      H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 57(1956), No. 4, art. No. 217. doi: 10.6028/jres.057.026
      [32]
      T. Ozawa, Estimation of activation energy by isoconversion methods, Thermochim. Acta, 203(1992), p. 159. doi: 10.1016/0040-6031(92)85192-X
      [33]
      M.A. Arshad, A. Maaroufi, R. Benavente, J.M. Pereña, and G. Pinto, Thermal degradation kinetics of insulating/conducting epoxy/Zn composites under nonisothermal conditions, Polym. Compos., 34(2013), No. 12, p. 2049. doi: 10.1002/pc.22613
      [34]
      J. Málek, The kinetic analysis of non-isothermal data, Thermochim. Acta, 200(1992), p. 257. doi: 10.1016/0040-6031(92)85118-F
      [35]
      A.W. Coats and J.P. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201(1964), p. 68. doi: 10.1038/201068a0
      [36]
      T. Shyrokykh, X.W. Wei, S. Seetharaman, and O. Volkova, Vaporization of vanadium pentoxide from CaO–SiO2–VO x slags during alumina dissolution, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1472. doi: 10.1007/s11663-021-02114-9
      [37]
      Y. Yang, L.D. Teng, and S. Seetharaman, Kinetic studies on evaporation of liquid vanadium oxide, VO x (where x = 4 or 5), Metall. Mater. Trans. B, 43(2012), No. 6, p. 1684. doi: 10.1007/s11663-012-9742-3
      [38]
      D.T. Cestarolli and E.M. Guerra, Vanadium pentoxide (V2O5): Their obtaining methods and wide applications, [in] Transition Metal Compounds–-Synthesis , Properties , and Application, IntechOpen, Vienna, 2021.
      [39]
      W.X. Wang, Z.L. Xue, S.Q. Song, et al., Research on high-temperature volatilization characteristics of V2O5 during direct alloying of smelting vanadium steel, Adv. Mater. Res., 557-559(2012), p. 182. doi: 10.4028/www.scientific.net/AMR.557-559.182
      [40]
      P.P. Stander and C.P.J. Van Vuuren, The high temperature oxidation of FeV2O4, Thermochim. Acta, 157(1990), No. 2, p. 347. doi: 10.1016/0040-6031(90)80036-X
      [41]
      J. Wen, T. Jiang, Y.Z. Xu, J.Y. Liu, and X.X. Xue, Efficient separation and extraction of vanadium and chromium in high chromium vanadium slag by selective two-stage roasting–leaching, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1471. doi: 10.1007/s11663-018-1197-8
      [42]
      H.Y. Li, J. Cheng, C.J. Wang, S. Shen, J. Diao, and B. Xie, Ecofriendly selective extraction of vanadium from vanadium slag with high chromium content via magnesiation roasting–acid leaching, Metall. Mater. Trans. B, 53(2022), No. 1, p. 604. doi: 10.1007/s11663-021-02402-4
      [43]
      J.Y. Xiang, X. Wang, G.S. Pei, Q.Y. Huang, and X.W. Lü, Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3114. doi: 10.1016/S1003-6326(20)65447-4

    Catalog


    • /

      返回文章
      返回