留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  290
  • HTML全文浏览量:  125
  • PDF下载量:  24
  • 被引次数: 0
Yuhua Qiu, Yingping Huang, Yanlan Wang, Xiang Liu, and Di Huang, Facile synthesis of Cu-doped manganese oxide octahedral molecular sieve for the efficient degradation of sulfamethoxazole via peroxymonosulfate activation, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2770-2780. https://doi.org/10.1007/s12613-024-2858-z
Cite this article as:
Yuhua Qiu, Yingping Huang, Yanlan Wang, Xiang Liu, and Di Huang, Facile synthesis of Cu-doped manganese oxide octahedral molecular sieve for the efficient degradation of sulfamethoxazole via peroxymonosulfate activation, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2770-2780. https://doi.org/10.1007/s12613-024-2858-z
引用本文 PDF XML SpringerLink
研究论文

铜掺杂氧化锰八面体分子筛的制备及其高效降解磺胺甲恶唑性能研究



  • 通讯作者:

    刘湘    E-mail: xiang.liu@ctgu.edu.cn

    黄笛    E-mail: huangd94@iccas.ac.cn

文章亮点

  • (1) 通过在氧化锰八面体分子筛(OMS-2)中掺杂Cu元素,合成了Cu-OMS-2纳米棒,显著增强OMS-2的活性。
  • (2) 研究了Cu-OMS-2纳米棒活化PMS高效降解SMX的机理。
  • (3) 展示了Cu-OMS-2/PMS在污水处理的潜在应用前景。
  • 以过氧单硫酸根(PMS)为基础的高级氧化法是去除污水中有毒和难降解有机污染物的有效方法。活化吸电子的$ {\mathrm{H}\mathrm{S}\mathrm{O}}_{5}^{-} $释放出硫酸盐自由基($ {\text{·}\mathrm{S}\mathrm{O}}_{4}^{-} $)、羟基自由基($ \text{·}\mathrm{O}\mathrm{H} $)、超氧自由基($ {\text{·}\mathrm{O}}_{2}^{-} $)和单线态氧(1O2)等活性物质,可诱导有机污染物的降解。本研究通过在氧化锰八面体分子筛(OMS-2)中掺杂Co2+、Ni2+、Cu2+、Fe3+,合成了多种M-OMS-2纳米棒(M = Co、Ni、Cu、Fe),通过活化PMS高效去除磺胺甲恶唑(SMX)。考察了M-OMS-2活化PMS去除SMX的催化性能。SMX去除率由高到低依次为Cu-OMS-2(96.40%) > Co-OMS-2(88.00%) > Ni-OMS-2(87.20%) > Fe-OMS-2(35.00%) > OMS-2(33.50%)。然后,研究了M-OMS-2纳米棒在去除SMX过程中的动力学和构效关系。通过猝灭实验、高分辨率质谱和电子顺磁共进一步研究了Cu-OMS-2/PMS体系降解SMX的可行机制。结果表明: Cu-OMS-2/PMS系统在海水和自来水中对SMX的降解效率均有提高,显示了该系统在污水处理中的潜在应用前景。
  • Research Article

    Facile synthesis of Cu-doped manganese oxide octahedral molecular sieve for the efficient degradation of sulfamethoxazole via peroxymonosulfate activation

    + Author Affiliations
    • Advanced processes for peroxymonosulfate (PMS)-based oxidation are efficient in eliminating toxic and refractory organic pollutants from sewage. The activation of electron-withdrawing $ {\mathrm{HSO}}_{5}^{-} $ releases reactive species, including sulfate radical ($ {\text{·}\mathrm{S}\mathrm{O}}_{4}^{-} $), hydroxyl radical ($ \text{·}\mathrm{O}\mathrm{H} $), superoxide radical ($ {\text{·}\mathrm{O}}_{2}^{-} $), and singlet oxygen (1O2), which can induce the degradation of organic contaminants. In this work, we synthesized a variety of M-OMS-2 nanorods (M = Co, Ni, Cu, Fe) by doping Co2+, Ni2+, Cu2+, or Fe3+ into manganese oxide octahedral molecular sieve (OMS-2) to efficiently remove sulfamethoxazole (SMX) via PMS activation. The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed. The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2 (96.40%), Co-OMS-2 (88.00%), Ni-OMS-2 (87.20%), Fe-OMS-2 (35.00%), and OMS-2 (33.50%). Then, the kinetics and structure–activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated. The feasible mechanism underlying SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment, high-resolution mass spectroscopy, and electron paramagnetic resonance. Results showed that SMX degradation efficiency was enhanced in seawater and tap water, demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
    • loading
    • Supplementary Information-s12613-024-2858-z.docx
    • [1]
      X.Y. Zhou, R.L. Yin, J.Q. Kang, et al., Atomic cation-vacancy modulated peroxymonosulfate nonradical oxidation of sulfamethoxazole via high-valent iron-oxo species, Appl. Catal. B, 330(2023), art. No. 122640. doi: 10.1016/j.apcatb.2023.122640
      [2]
      J.B. Peng, Y. Chang, L. Xu, et al., Insights into the enhanced removal of sulfamethoxazole via peroxymonosulfate activation catalyzed by bimetallic (Co/Cu) doped graphitic carbon nitride: Reaction kinetics, mechanisms, and pathways, Chem. Eng. J., 476(2023), art. No. 146692. doi: 10.1016/j.cej.2023.146692
      [3]
      N. Jaafarzadeh, F. Ghanbari, and A. Zahedi, Coupling electrooxidation and Oxone for degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions, J. Water Process. Eng., 22(2018), p. 203. doi: 10.1016/j.jwpe.2018.01.020
      [4]
      S.J. Li, X.Y. Zheng, H.C. Jin, et al., Multivalent cobalt species supported on graphene aerogel for degradation of sulfamethoxazole via high-valent cobalt-oxo species, Chem. Eng. J., 463(2023), art. No. 142367. doi: 10.1016/j.cej.2023.142367
      [5]
      Rachna, M. Rani, and U. Shanker, Sunlight assisted degradation of toxic phenols by zinc oxide doped Prussian blue nanocomposite, J. Environ. Chem. Eng., 8(2020), No. 4, art. No. 104040. doi: 10.1016/j.jece.2020.104040
      [6]
      Y.Y. Peng, M.Y. Cui, Z.Y. Zhang, et al., Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver–palladium alloy nanoparticles, ACS Catal., 9(2019), No. 12, p. 10803. doi: 10.1021/acscatal.9b02282
      [7]
      A. Kottapurath Vijay, V. Marks, A. Mizrahi, et al., Reaction of $ {\mathrm{F}\mathrm{e}}_{\mathrm{a}\mathrm{q}}^{\mathrm{I}\mathrm{I}} $ with peroxymonosulfate and peroxydisulfate in the presence of bicarbonate: Formation of $ {\mathrm{F}\mathrm{e}}_{\mathrm{a}\mathrm{q}}^{\mathrm{I}\mathrm{V}} $ and carbonate radical anions, Environ. Sci. Technol., 57(2023), No. 16, p. 6743. doi: 10.1021/acs.est.3c00182
      [8]
      C. Zhong, H.B. Cao, Q.G. Huang, Y.B. Xie, and H. Zhao, Degradation of sulfamethoxazole by manganese(IV) oxide in the presence of humic acid: Role of stabilized semiquinone radicals, Environ. Sci. Technol., 57(2023), No. 36, p. 13625. doi: 10.1021/acs.est.3c03698
      [9]
      Z.P. Wang, Z.B. Chen, Q.B. Li, et al., Non-radical activation of peracetic acid by powdered activated carbon for the degradation of sulfamethoxazole, Environ. Sci. Technol., 57(2023), No. 28, p. 10478. doi: 10.1021/acs.est.3c03370
      [10]
      H. Zhang, Y. Mei, F. Zhu, F.T. Yu, S. Komarneni, and J.F. Ma, Efficient activation of persulfate by C@Fe3O4 in visible-light for tetracycline degradation, Chemosphere, 306(2022), art. No. 135635. doi: 10.1016/j.chemosphere.2022.135635
      [11]
      C.T. Guan, J. Jiang, S.Y. Pang, J. Ma, X. Chen, and T.T. Lim, Nonradical transformation of sulfamethoxazole by carbon nanotube activated peroxydisulfate: Kinetics, mechanism and product toxicity, Chem. Eng. J., 378(2019), art. No. 122147. doi: 10.1016/j.cej.2019.122147
      [12]
      Y. Hu, X.P. Wei, Q.Q. Zhu, L. Li, C.Y. Liao, and G.B. Jiang, COVID-19 pandemic impacts on humans taking antibiotics in China, Environ. Sci. Technol., 56(2022), No. 12, p. 8338. doi: 10.1021/acs.est.1c07655
      [13]
      M. Qiao, G.G. Ying, A.C. Singer, and Y.G. Zhu, Review of antibiotic resistance in China and its environment, Environ. Int., 110(2018), p. 160. doi: 10.1016/j.envint.2017.10.016
      [14]
      L.G. Wu, X.Y. Xiao, F. Chen, et al., New parameters for the quantitative assessment of the proliferation of antibiotic resistance genes dynamic in the environment and its application: A case of sulfonamides and sulfonamide resistance genes, Sci. Total Environ., 726(2020), art. No. 138516. doi: 10.1016/j.scitotenv.2020.138516
      [15]
      Y.L. Guo, M.H. Sui, S. Liu, et al., Insight into cobalt substitution in LaFeO3-based catalyst for enhanced activation of peracetic acid: Reactive species and catalytic mechanism, J. Hazard. Mater., 461(2024), art. No. 132662. doi: 10.1016/j.jhazmat.2023.132662
      [16]
      C. Xiao, Y.Y. Hu, Q.T. Li, et al., Degradation of sulfamethoxazole by super-hydrophilic MoS2 sponge co-catalytic Fenton: Enhancing Fe2+/Fe3+ cycle and mass transfer, J. Hazard. Mater., 458(2023), art. No. 131878. doi: 10.1016/j.jhazmat.2023.131878
      [17]
      J.L. Zheng, Q.T. Lin, Y.X. Liu, et al., Efficient activation of peroxymonosulfate by Fe single-atom: The key role of Fe-pyrrolic nitrogen coordination in generating singlet oxygen and high-valent Fe species, J. Hazard. Mater., 462(2024), art. No. 132753. doi: 10.1016/j.jhazmat.2023.132753
      [18]
      S. Yang, Y. Shi, X.H. Wang, et al., Selective elimination of sulfonamide antibiotics upon periodate/catechol process: Dominance of quinone intermediates, Water Res., 242(2023), art. No. 120317. doi: 10.1016/j.watres.2023.120317
      [19]
      T. Yang, L.Q. An, G. Zeng, et al., Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate, Water Res., 243(2023), art. No. 120401. doi: 10.1016/j.watres.2023.120401
      [20]
      X. Li, X. Wen, J.Y. Lang, et al., CoN1O2 single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(IV) = O generation, Angew. Chem. Int. Ed., 62(2023), No. 27, art. No. e202303267. doi: 10.1002/anie.202303267
      [21]
      Q.Y. Li, F.Y. Fu, J.Y. Yan, et al, Synthesis of N-doped porous biochar from chemical pollutant for efficient sulfadiazine degradation: Performance, mechanism and bio-toxicity assessment, Sep. Purif. Technol., 353(2025), art. No. 128432. doi: 10.1016/j.seppur.2024.128432
      [22]
      Y.N. Xiao, J.H. Hu, X.Y. Li, et al., Constructing zinc single-atom catalysts for the direct electron-transfer mechanism in peroxymonosulfate activation to degrade sulfamethoxazole efficiently, Chem. Eng. J., 474(2023), art. No. 145973. doi: 10.1016/j.cej.2023.145973
      [23]
      M. Moradi, B. Kakavandi, A. Bahadoran, S. Giannakis, and E. Dehghanifard, Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4S-scheme photocatalyst: Catalytic synergies and mechanistic interpretation, Sep. Purif. Technol., 285(2022), art. No. 120313. doi: 10.1016/j.seppur.2021.120313
      [24]
      J. Ma, X. Yang, X. Jiang, et al., Percarbonate persistence under different water chemistry conditions, Chem. Eng. J., 389(2020), art. No. 123422. doi: 10.1016/j.cej.2019.123422
      [25]
      N. An, S.J. Li, B.T. Xu, et al., Role of nitrogen dual reaction sites in N-doped graphene aerogels for synergistic sulfamethoxazole adsorption and peroxymonosulfate activation in Fenton-like process, Chem. Eng. J., 475(2023), art. No. 146309. doi: 10.1016/j.cej.2023.146309
      [26]
      L.J. Peng, Y.N. Shang, B.Y. Gao, and X. Xu, Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N–Co binding and high tolerance of chloride, Appl. Catal. B, 282(2021), art. No. 119484. doi: 10.1016/j.apcatb.2020.119484
      [27]
      S. Wang, J.S. Qian, B.L. Zhang, L. Chen, S. Wei, and B.C. Pan, Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across China, Environ. Sci. Technol., 57(2023), No. 5, p. 1907. doi: 10.1021/acs.est.2c06077
      [28]
      S.C. Wang, Y.M. Lin, B.B. Shao, H.Y. Dong, J. Ma, and X.H. Guan, Selective removal of emerging organic contaminants from water using electrogenerated Fe(IV) and Fe(V) under near-neutral conditions, Environ. Sci. Technol., 57(2023), No. 25, p. 9332. doi: 10.1021/acs.est.3c01850
      [29]
      Y.N. Shang, X. Xu, B.Y. Gao, S.B. Wang, and X.G. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation, Chem. Soc. Rev., 50(2021), No. 8, p. 5281. doi: 10.1039/D0CS01032D
      [30]
      J.L. Wang and R. Zhuan, Degradation of antibiotics by advanced oxidation processes: An overview, Sci. Total Environ., 701(2020), art. No. 135023. doi: 10.1016/j.scitotenv.2019.135023
      [31]
      Y.T. Peng, H.M. Tang, B. Yao, X. Gao, X. Yang, and Y.Y. Zhou, Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review, Chem. Eng. J., 414(2021), art. No. 128800. doi: 10.1016/j.cej.2021.128800
      [32]
      C.Y. Ma, Y.J. Guo, D.F. Zhang, et al., Metal-nitrogen-carbon catalysts for peroxymonosulfate activation to degrade aquatic organic contaminants: Rational design, size-effect description, applications and mechanisms, Chem. Eng. J., 454(2023), art. No. 140216. doi: 10.1016/j.cej.2022.140216
      [33]
      X.Q. Zhou, Q.D. Zhao, J. Wang, Z.L. Chen, and Z.Q. Chen, Nonradical oxidation processes in PMS-based heterogeneous catalytic system: Generation, identification, oxidation characteristics, challenges response and application prospects, Chem. Eng. J., 410(2021), art. No. 128312. doi: 10.1016/j.cej.2020.128312
      [34]
      M. Kohantorabi, G. Moussavi, and S. Giannakis, A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants, Chem. Eng. J., 411(2021), art. No. 127957. doi: 10.1016/j.cej.2020.127957
      [35]
      J.W. Sun, T. Wu, Z.F. Liu, et al., Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review, J. Clean. Prod., 346(2022), art. No. 131143. doi: 10.1016/j.jclepro.2022.131143
      [36]
      X.T. Jin, Y.L. Wang, Y.P. Huang, D. Huang, and X. Liu, Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism, Chin. Chem. Lett, 35(2024), No. 10, art. No. 109499. doi: 10.1016/j.cclet.2024.109499
      [37]
      L.J. Wang, K. Xiao, and H.Z. Zhao, The debatable role of singlet oxygen in persulfate-based advanced oxidation processes, Water Res., 235(2023), art. No. 119925. doi: 10.1016/j.watres.2023.119925
      [38]
      C. Fang, J.Y. Yan, Y.L. Wang, N.N. Zhang, and X. Liu, Facile synthesis of N-doped carbon nanorods for antibiotics degradation via PMS activation: Mechanism insight and biotoxicity assessment, Sep. Purif. Technol., 340(2024), art. No. 126849. doi: 10.1016/j.seppur.2024.126849
      [39]
      K. Pang, J.Y. Yan, N.N. Zhang, C. Fang, F.Y. Fu, and X. Liu, Spatial confinement of Co nanoparticles in N-doped carbon nanorods for wastewater purification via CaSO3 activation, Inorg. Chem., 63(2024), No. 15, p. 7071. doi: 10.1021/acs.inorgchem.4c00860
      [40]
      K. Pang, C. Fang, Y.L. Wang, Y.P. Huang, D. Huang, and X. Liu, Synthesis of Mo-based/carbon nanocomposistes for water decontamination via percarbonate activation, Catal. Lett., 154(2024), No. 6, p. 2999. doi: 10.1007/s10562-023-04517-6
      [41]
      C. Fang, Y.L. Wang, W.K. Huang, Y.P. Huang, D. Huang, and X. Liu, Carbon nanosphere as an efficient support for CoO x nanoparticles on water decontamination via sulfite activation, Surf. Interfaces, 44(2024), art. No. 103732. doi: 10.1016/j.surfin.2023.103732
      [42]
      Y.H. Zhou, C. Fang, X.J. Yang, Y.L. Wang, J.Y. Yan, and X. Liu, Selective 1O2 generation from peroxymonosulfate activation over N-doped carbon nanosponges for pollutant degradation, ACS Appl. Nano Mater., 6(2023), No. 19, p. 18403. doi: 10.1021/acsanm.3c03743
      [43]
      C. Fang, Z.X. Hao, Y.L. Wang, Y.P. Huang, D. Huang, and X. Liu, Carbon nanotube as a nanoreactor for efficient degradation of 3-aminophenol over CoO x/CNT catalyst, J. Clean. Prod., 405(2023), art. No. 136912. doi: 10.1016/j.jclepro.2023.136912
      [44]
      J.Z. Huang and H.C. Zhang, Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review, Environ. Int., 133(2019), art. No. 105141. doi: 10.1016/j.envint.2019.105141
      [45]
      Y.X. Hao, L.L. Li, Z.M. Lu, X.F. Yu, X.H. Zhang, and X.J. Yang, OMS-2 nanorods filled with Co-ion in the tunnels as efficient electron conduits and regulatory substance for oxygen reduction, Appl. Catal. B, 279(2020), art. No. 119373. doi: 10.1016/j.apcatb.2020.119373
      [46]
      A. Iyer, H. Galindo, S. Sithambaram, C. King’ondu, C.H. Chen, and S.L. Suib, Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation, Appl. Catal. A, 375(2010), No. 2, p. 295. doi: 10.1016/j.apcata.2010.01.012
      [47]
      M. Sun, L. Yu, F. Ye, et al., Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether, Chem. Eng. J., 220(2013), p. 320. doi: 10.1016/j.cej.2013.01.061
      [48]
      N. Yao, H.Y. Zhao, X. Liu, et al., Synergistic adsorption and oxidative degradation of polyvinyl alcohol by acidified OMS-2: Catalytic mechanism, degradation pathway and toxicity evaluation, Sep. Purif. Technol., 302(2022), art. No. 122047. doi: 10.1016/j.seppur.2022.122047
      [49]
      L. Zhang, S.C. Han, Y.J. Wu, et al., Complete oxidation of formaldehyde at room temperature over Ag-loaded octahedral molecular sieve synthesized from solvent-free route, Appl. Catal. B, 303(2022), art. No. 120875. doi: 10.1016/j.apcatb.2021.120875
      [50]
      W.B. Liu, Y. Yang, Y.H. Li, et al., Oxygen vacancies enhanced natural manganese sand activation by PMS for CBZ degradation: Intermediate toxicity and DFT calculations, Sep. Purif. Technol., 329(2024), art. No. 125015. doi: 10.1016/j.seppur.2023.125015
      [51]
      X. Yang, G.L. Wei, P.Q. Wu, P. Liu, X.L. Liang, and W. Chu, Controlling oxygen vacancies of CoMn2O4 by loading on planar and tubular clay minerals and its application for boosted PMS activation, J. Hazard. Mater., 436(2022), art. No. 129060. doi: 10.1016/j.jhazmat.2022.129060
      [52]
      J.L. Wang and S.Z. Wang, Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants, Chem. Eng. J., 411(2021), art. No. 128392. doi: 10.1016/j.cej.2020.128392
      [53]
      C.L. Chen, J. Xie, X. Chen, W.X. Zhang, J. Chen, and A.P. Jia, Cu species-modified OMS-2 materials for enhancing ozone catalytic decomposition under humid conditions, ACS Omega, 8(2023), No. 22, p. 19632. doi: 10.1021/acsomega.3c01186
      [54]
      X. Liu, Z.X. Hao, C. Fang, et al., Using waste to treat waste: Facile synthesis of hollow carbon nanospheres from lignin for water decontamination, Chem. Sci., 15(2024), No. 1, p. 204. doi: 10.1039/D3SC05275C
      [55]
      Q.Y. Li, J.Y. Ruan, X.Y. Zhang, et al., Spatial confinement of Co–N–C catalyst in carbon nanocuboid for water decontamination: High performance, mechanism and biotoxicity assessment, Chem. Eng. J., 479(2024), art. No. 147555. doi: 10.1016/j.cej.2023.147555
      [56]
      Z.H. Chen, B.F. Lin, Y.P. Huang, et al., Pyrolysis temperature affects the physiochemical characteristics of lanthanum-modified biochar derived from orange peels: Insights into the mechanisms of tetracycline adsorption by spectroscopic analysis and theoretical calculations, Sci. Total Environ., 862(2023), art. No. 160860. doi: 10.1016/j.scitotenv.2022.160860
      [57]
      J.L. Wang and S.Z. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism, Chem. Eng. J., 401(2020), art. No. 126158. doi: 10.1016/j.cej.2020.126158
      [58]
      S.H. Wu, Z.W. Yang, Z.Y. Zhou, et al., Catalytic activity and reaction mechanisms of single-atom metals anchored on nitrogen-doped carbons for peroxymonosulfate activation, J. Hazard. Mater., 459(2023), art. No. 132133. doi: 10.1016/j.jhazmat.2023.132133
      [59]
      L.S. Kong, G.D. Fang, Y.F. Chen, et al., Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies, Appl. Catal. B, 253(2019), p. 278. doi: 10.1016/j.apcatb.2019.04.069
      [60]
      Y.B. Shi, X.B. Wang, X.F. Liu, C.C. Ling, W.J. Shen, and L.Z. Zhang, Visible light promoted Fe3S4 Fenton oxidation of atrazine, Appl. Catal. B, 277(2020), art. No. 119229. doi: 10.1016/j.apcatb.2020.119229
      [61]
      J.M. Wu, Y.G. Sun, W.E. Chang, and J.T. Lee, Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers, Nano Energy, 46(2018), p. 372. doi: 10.1016/j.nanoen.2018.02.010
      [62]
      Y.B. Shi, Z.P. Yang, L.J. Shi, et al., Surface boronizing can weaken the excitonic effects of BiOBr nanosheets for efficient O2 activation and selective NO oxidation under visible light irradiation, Environ. Sci. Technol., 56(2022), No. 20, p. 14478. doi: 10.1021/acs.est.2c03769
      [63]
      Y.B. Shi, C.C. Zhang, Z.P. Yang, et al., Interfacial electrostatic field boosted exciton dissociation of phosphorylated BiOBr for efficient O2 activation and chlorobenzene degradation, J. Phys. Chem. C, 126(2022), No. 51, p. 21847. doi: 10.1021/acs.jpcc.2c07341
      [64]
      D.T. Oyekunle, E.A. Gendy, J. Ifthikar, and Z.Q. Chen, Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: A review, Chem. Eng. J., 437(2022), art. No. 135277. doi: 10.1016/j.cej.2022.135277
      [65]
      M. Wang, Y.W. Tang, J.D. Wang, et al., Promoted peroxydisulfate activation by nitrogen-doped carbon embedding iron on a nickel foam cathode: Performance, mechanism and relationship between CO and 1O2 generation, Chem. Eng. J., 460(2023), art. No. 141638. doi: 10.1016/j.cej.2023.141638
      [66]
      H.X. Zeng, L. Deng, H.J. Zhang, C. Zhou, and Z. Shi, Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation, J. Hazard. Mater., 400(2020), art. No. 123297. doi: 10.1016/j.jhazmat.2020.123297
      [67]
      A.N. Wang, B.Z. Zhu, C.H. Huang, et al., Generation mechanism of singlet oxygen from the interaction of peroxymonosulfate and chloride in aqueous systems, Water Res., 235(2023), art. No. 119904. doi: 10.1016/j.watres.2023.119904

    Catalog


    • /

      返回文章
      返回