留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  415
  • HTML全文浏览量:  187
  • PDF下载量:  32
  • 被引次数: 0
Xiaoxue Wang, Lulu Jin, Jinke Wang, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Lingwei Ma, Hongchang Qian, and Dawei Zhang, Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 119-126. https://doi.org/10.1007/s12613-024-2860-5
Cite this article as:
Xiaoxue Wang, Lulu Jin, Jinke Wang, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Lingwei Ma, Hongchang Qian, and Dawei Zhang, Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 119-126. https://doi.org/10.1007/s12613-024-2860-5
引用本文 PDF XML SpringerLink
研究论文

采用大气实时腐蚀监测技术评价负载缓蚀剂涂层的防腐性能


  • 通讯作者:

    马菱薇    E-mail: mlw1215@ustb.edu.cn

    钱鸿昌    E-mail: qianhc@ustb.edu.cn

    张达威    E-mail: dzhang@ustb.edu.cn

文章亮点

  • (1) 采用大气实时腐蚀监测技术研究了负载缓蚀剂涂层的防腐性能变化情况。
  • (2) 添加磷酸锌缓蚀剂能有效提升环氧涂层的防腐性能。
  • (3) 大气实时腐蚀监测技术与常规电化学测试和表面分析结果具有一致性。
  • 大气腐蚀监测(ACM)技术已被广泛应用于追踪金属材料的实时腐蚀行为变化,但却很少有研究将其应用于有机涂层防腐性能的监测。本研究将纯环氧涂层和添加有磷酸锌缓蚀剂的环氧涂层涂覆在ACM传感器表面,制造人工损伤后进行腐蚀试验,观察涂层防腐性能随腐蚀试验进行的变化情况。将损伤后涂层分别暴露于浸泡和交替干湿环境中,实时采集ACM传感器的电偶腐蚀电流。在以上两种腐蚀环境下的试验过程中,涂装添加有磷酸锌缓蚀剂环氧涂层的ACM传感器腐蚀电流明显低于涂装纯环氧涂层传感器的腐蚀电流值,这主要归功于磷酸锌缓蚀剂对涂层破损处金属基底的缓蚀作用。电化学阻抗谱结果表明,添加有磷酸锌缓蚀剂涂层在浸泡七天后的低频阻抗模值高出纯环氧涂层一个数量级。此外,添加有磷酸锌缓蚀剂涂层在划伤处也显示出更少的腐蚀产物,再次印证了磷酸锌对金属基底的缓蚀作用。ACM传感器腐蚀电流的变化趋势与常规电化学阻抗谱及表面分析测试结果具有明显的一致性,说明ACM技术在评价有机涂层腐蚀防护性能方面具有极大潜力。
  • Research Article

    Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique

    + Author Affiliations
    • The atmospheric corrosion monitoring (ACM) technique has been widely employed to track the real-time corrosion behavior of metal materials. However, limited studies have applied ACM to the corrosion protection properties of organic coatings. This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors, both applied on ACM sensors, to observe their corrosion protection properties over time. Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments, which allowed for monitoring galvanic corrosion currents in real-time. Throughout the corrosion tests, the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating. The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis. This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings. Compared with the blank epoxy coating, the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
    • loading
    • [1]
      F. Zhang, P.F. Ju, M.Q. Pan, et al., Self-healing mechanisms in smart protective coatings: A review, Corros. Sci., 144(2018), p. 74. doi: 10.1016/j.corsci.2018.08.005
      [2]
      D. Wang, C. Ma, J.Y. Liu, et al., Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1128. doi: 10.1007/s12613-023-2596-7
      [3]
      C. Ma, D. Wang, J.Y. Liu, N. Peng, W. Shang, and Y.Q. Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 959. doi: 10.1007/s12613-022-2542-0
      [4]
      M. Cheng, Q. Fu, B. Tan, et al., Build a bridge from polymeric structure design to engineering application of self-healing coatings: A review, Prog. Org. Coat., 167(2022), art. No. 106790. doi: 10.1016/j.porgcoat.2022.106790
      [5]
      J.K. Wang, W.M. Tan, H. Yang, et al., Towards weathering and corrosion resistant, self-warning and self-healing epoxy coatings with tannic acid loaded nanocontainers, npj Mater. Degrad., 7(2023), art. No. 39. doi: 10.1038/s41529-023-00360-7
      [6]
      B.R. Hou, X.G. Li, X.M. Ma, et al., The cost of corrosion in China, npj Mater. Degrad., 1(2017), art. No. 4. doi: 10.1038/s41529-017-0005-2
      [7]
      X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
      [8]
      L. Zhao, J.K. Wang, K. Chen, et al., Functionalized carbon dots for corrosion protection: Recent advances and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2112. doi: 10.1007/s12613-023-2675-9
      [9]
      Y.J. Wang, J.K. Wang, L.W. Ma, et al., Qualitative and quantitative detection of corrosion inhibitors using surface-enhanced Raman scattering coupled with multivariate analysis, Appl. Surf. Sci., 568(2021), art. No. 150967. doi: 10.1016/j.apsusc.2021.150967
      [10]
      Y.N. Wang, C.F. Dong, D.W. Zhang, P.P. Ren, L. Li, and X.G. Li, Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 998. doi: 10.1007/s12613-015-1161-4
      [11]
      T. Yimyai, D. Crespy, and M. Rohwerder, Corrosion-responsive self-healing coatings, Adv. Mater., 35(2023), No. 47, art. No. e2300101. doi: 10.1002/adma.202300101
      [12]
      L. Wang, S.N. Li, and J.J. Fu, Self-healing anti-corrosion coatings based on micron-nano containers with different structural morphologies, Prog. Org. Coat., 175(2023), art. No. 107381. doi: 10.1016/j.porgcoat.2022.107381
      [13]
      Y. Huang, P.J. Wang, W.M. Tan, et al., Photothermal and pH dual-responsive self-healing coating for smart corrosion protection, J. Mater. Sci. Technol., 107(2022), p. 34. doi: 10.1016/j.jmst.2021.08.044
      [14]
      X.Y. Wang, S. Liu, J. Yan, J.P. Zhang, Q.Y. Zhang, and Y. Yan, Recent progress of polymeric corrosion inhibitor: Structure and application, Materials, 16(2023), No. 8, art. No. 2954. doi: 10.3390/ma16082954
      [15]
      J.M. He, W.X. Xu, H. Liu, et al., Preparation of a novel 2-amino benzothiazole loaded ZIF-8/layer double hydroxide composite and its application in anti-corrosion epoxy coatings, Prog. Org. Coat., 185(2023), art. No. 107927. doi: 10.1016/j.porgcoat.2023.107927
      [16]
      J.K. Wang, L.W. Ma, Z.B. Chen, et al., Multi-channel preparation and high-throughput screening of coating fillers with optimized corrosion sensing and inhibition properties for smart protective coatings, Corros. Sci., 222(2023), art. No. 111390. doi: 10.1016/j.corsci.2023.111390
      [17]
      L. Cheng, C.B. Liu, H. Wu, H.C. Zhao, and L.P. Wang, A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings, Corros. Sci., 193(2021), art. No. 109891. doi: 10.1016/j.corsci.2021.109891
      [18]
      J.J. Zhao, A. Santoso, and S.J. Garcia, Small concentrations of NaCl help building stable inhibiting layers from 2, 5-dimercapto-1, 3, 4-thiadiazole (DMTD) on AA2024-T3, Corros. Sci., 225(2023), art. No. 111562. doi: 10.1016/j.corsci.2023.111562
      [19]
      H. Khosravi, R. Naderi, and B. Ramezanzadeh, Designing an epoxy composite coating having dual-barrier-active self-healing anti-corrosion functions using a multi-functional GO/PDA/MO nano-hybrid, Mater. Today Chem., 27(2023), art. No. 101282. doi: 10.1016/j.mtchem.2022.101282
      [20]
      X. Liu, Z.Y. Gao, D. Wang, F.J. Yu, B.S. Du, and I. Gitsov, Improving the protection performance of waterborne coatings with a corrosion inhibitor encapsulated in polyaniline-modified halloysite nanotubes, Coatings, 13(2023), No. 10, art. No. 1677. doi: 10.3390/coatings13101677
      [21]
      K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. De Padova, and G. Hegde, Recent trends and progress in corrosion inhibitors and electrochemical evaluation, Appl. Sci., 13(2023), No. 18, art. No. 10107. doi: 10.3390/app131810107
      [22]
      D. Xu, Z.B. Pei, X.J. Yang, et al., A review of trends in corrosion-resistant structural steels research-from theoretical simulation to data-driven directions, Materials, 16(2023), No. 9, art. No. 3396. doi: 10.3390/ma16093396
      [23]
      D.H. Xia, C.M. Deng, D. Macdonald, et al., Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review, J. Mater. Sci. Technol., 112(2022), p. 151. doi: 10.1016/j.jmst.2021.11.004
      [24]
      J.H. Ahn, Y.S. Jeong, I.T. Kim, S.H. Jeon, and C.H. Park, A method for estimating time-dependent corrosion depth of carbon and weathering steel using an atmospheric corrosion monitor sensor, Sensors, 19(2019), No. 6, art. No. 1416. doi: 10.3390/s19061416
      [25]
      X.J. Yang, Y. Yang, M.H. Sun, et al., A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology, J. Mater. Sci. Technol., 104(2022), p. 67. doi: 10.1016/j.jmst.2021.05.086
      [26]
      Q. Li, X.J. Xia, Z.B. Pei, et al., Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method, npj Mater. Degrad., 6(2022), art. No. 1. doi: 10.1038/s41529-021-00211-3
      [27]
      A. Nishikata, Q.J. Zhu, and E. Tada, Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corros. Sci., 87(2014), p. 80. doi: 10.1016/j.corsci.2014.06.007
      [28]
      S. Wan, J. Hou, Z.F. Zhang, X.X. Zhang, and Z.H. Dong, Monitoring of atmospheric corrosion and dewing process by interlacing copper electrode sensor, Corros. Sci., 150(2019), p. 246. doi: 10.1016/j.corsci.2019.02.008
      [29]
      D.H. Xia, S.Z. Song, W.X. Jin, et al., Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 6, p. 1433. doi: 10.1007/s11595-017-1765-9
      [30]
      D. Mizuno, S. Suzuki, S. Fujita, and N. Hara, Corrosion monitoring and materials selection for automotive environments by using atmospheric corrosion monitor (ACM) sensor, Corros. Sci., 83(2014), p. 217. doi: 10.1016/j.corsci.2014.02.020
      [31]
      Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
      [32]
      T. Xie and I.A. Rousseau, Facile tailoring of thermal transition temperatures of epoxy shape memory polymers, Polymer, 50(2009), No. 8, p. 1852. doi: 10.1016/j.polymer.2009.02.035
      [33]
      K. Gong, M. Wu, and G.X. Liu, Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments, Constr. Build. Mater., 235(2020), art. No. 117440. doi: 10.1016/j.conbuildmat.2019.117440
      [34]
      J.K. Wang, L.W. Ma, Y. Huang, et al., Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms, Composites Part B, 231(2022), art. No. 109574. doi: 10.1016/j.compositesb.2021.109574
      [35]
      C. Qiao, Q. Wu, L. Hao, et al., Material selection in making electrochemical impedance spectroscopy sensor for electrolyte thickness measurement in marine atmosphere, Corros. Sci., 221(2023), art. No. 111373. doi: 10.1016/j.corsci.2023.111373
      [36]
      Z.W. Zou, G.L. Song, Z.M. Wang, and D.J. Zheng, A novel single-electrode AC probe for rapid monitoring of both instantaneous and accumulated electrochemical parameters in corrosion, Electrochim. Acta, 321(2019), art. No. 134664. doi: 10.1016/j.electacta.2019.134664
      [37]
      Z.B. Pei, X.Q. Cheng, X.J. Yang, et al., Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors, J. Mater. Sci. Technol., 64(2021), p. 214. doi: 10.1016/j.jmst.2020.01.023
      [38]
      B.F. Fan, J.J. Yang, L. Cao, et al., Revealing the impact of micro-SiO2 filer content on the anti-corrosion performance of water-borne epoxy resin, Polymers, 15(2023), No. 15, art. No. 3273. doi: 10.3390/polym15153273
      [39]
      L.W. Ma, J.K. Wang, Y.J. Wang, et al., Enhanced active corrosion protection coatings for aluminum alloys with two corrosion inhibitors co-incorporated in nanocontainers, Corros. Sci., 208(2022), art. No. 110663. doi: 10.1016/j.corsci.2022.110663
      [40]
      R. Raj, Y. Morozov, L.M. Calado, et al., Inhibitor loaded calcium carbonate microparticles for corrosion protection of epoxy-coated carbon steel, Electrochim. Acta, 319(2019), p. 801.
      [41]
      M. Mahdavian and M.M. Attar, Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies, Corros. Sci., 48(2006), No. 12, p. 4152. doi: 10.1016/j.corsci.2006.03.012
      [42]
      L.W. Ma, J.K. Wang, D.W. Zhang, et al., Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers, Chem. Eng. J., 404(2021), art. No. 127118. doi: 10.1016/j.cej.2020.127118
      [43]
      Y.T. Wu, S.G. Wen, K.M. Chen, J.H. Wang, G.Y. Wang, and K. Sun, Enhanced corrosion resistance of waterborne polyurethane containing sulfonated graphene/zinc phosphate composites, Prog. Org. Coat., 132(2019), p. 409. doi: 10.1016/j.porgcoat.2019.04.013
      [44]
      H.X. Wan, D.D. Song, X.G. Li, D.W. Zhang, J. Gao, and C.W. Du, Effect of zinc phosphate on the corrosion behavior of waterborne acrylic coating/metal interface, Materials, 10(2017), No. 6, art. No. 654. doi: 10.3390/ma10060654
      [45]
      Z.B. Pei, K. Xiao, L.H. Chen, et al., Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments, Metals, 10(2020), No. 7, art. No. 905. doi: 10.3390/met10070905
      [46]
      D.D. Song, H.X. Wan, X.H. Tu, and W. Li, A better understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy, Prog. Org. Coat., 142(2020), art. No. 105558. doi: 10.1016/j.porgcoat.2020.105558
      [47]
      N. Wint, C.M. Griffiths, C.J. Richards, G. Williams, and H.N. McMurray, The role of benzotriazole modified zinc phosphate in preventing corrosion-driven organic coating disbondment on galvanised steel, Corros. Sci., 174(2020), art. No. 108839. doi: 10.1016/j.corsci.2020.108839

    Catalog


    • /

      返回文章
      返回