Cite this article as: |
Xiaoxue Wang, Lulu Jin, Jinke Wang, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Lingwei Ma, Hongchang Qian, and Dawei Zhang, Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2860-5 |
马菱薇 E-mail: mlw1215@ustb.edu.cn
钱鸿昌 E-mail: qianhc@ustb.edu.cn
张达威 E-mail: dzhang@ustb.edu.cn
[1] |
F. Zhang, P.F. Ju, M.Q. Pan, et al., Self-healing mechanisms in smart protective coatings: A review, Corros. Sci., 144(2018), p. 74. doi: 10.1016/j.corsci.2018.08.005
|
[2] |
D. Wang, C. Ma, J.Y. Liu, et al., Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1128. doi: 10.1007/s12613-023-2596-7
|
[3] |
C. Ma, D. Wang, J.Y. Liu, N. Peng, W. Shang, and Y.Q. Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 959. doi: 10.1007/s12613-022-2542-0
|
[4] |
M. Cheng, Q. Fu, B. Tan, et al., Build a bridge from polymeric structure design to engineering application of self-healing coatings: A review, Prog. Org. Coat., 167(2022), art. No. 106790. doi: 10.1016/j.porgcoat.2022.106790
|
[5] |
J.K. Wang, W.M. Tan, H. Yang, et al., Towards weathering and corrosion resistant, self-warning and self-healing epoxy coatings with tannic acid loaded nanocontainers, npj Mater. Degrad., 7(2023), art. No. 39. doi: 10.1038/s41529-023-00360-7
|
[6] |
B.R. Hou, X.G. Li, X.M. Ma, et al., The cost of corrosion in China, npj Mater. Degrad., 1(2017), art. No. 4. doi: 10.1038/s41529-017-0005-2
|
[7] |
X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
|
[8] |
L. Zhao, J.K. Wang, K. Chen, et al., Functionalized carbon dots for corrosion protection: Recent advances and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2112. doi: 10.1007/s12613-023-2675-9
|
[9] |
Y.J. Wang, J.K. Wang, L.W. Ma, et al., Qualitative and quantitative detection of corrosion inhibitors using surface-enhanced Raman scattering coupled with multivariate analysis, Appl. Surf. Sci., 568(2021), art. No. 150967. doi: 10.1016/j.apsusc.2021.150967
|
[10] |
Y.N. Wang, C.F. Dong, D.W. Zhang, P.P. Ren, L. Li, and X.G. Li, Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 998. doi: 10.1007/s12613-015-1161-4
|
[11] |
T. Yimyai, D. Crespy, and M. Rohwerder, Corrosion-responsive self-healing coatings, Adv. Mater., 35(2023), No. 47, art. No. e2300101. doi: 10.1002/adma.202300101
|
[12] |
L. Wang, S.N. Li, and J.J. Fu, Self-healing anti-corrosion coatings based on micron-nano containers with different structural morphologies, Prog. Org. Coat., 175(2023), art. No. 107381. doi: 10.1016/j.porgcoat.2022.107381
|
[13] |
Y. Huang, P.J. Wang, W.M. Tan, et al., Photothermal and pH dual-responsive self-healing coating for smart corrosion protection, J. Mater. Sci. Technol., 107(2022), p. 34. doi: 10.1016/j.jmst.2021.08.044
|
[14] |
X.Y. Wang, S. Liu, J. Yan, J.P. Zhang, Q.Y. Zhang, and Y. Yan, Recent progress of polymeric corrosion inhibitor: Structure and application, Materials, 16(2023), No. 8, art. No. 2954. doi: 10.3390/ma16082954
|
[15] |
J.M. He, W.X. Xu, H. Liu, et al., Preparation of a novel 2-amino benzothiazole loaded ZIF-8/layer double hydroxide composite and its application in anti-corrosion epoxy coatings, Prog. Org. Coat., 185(2023), art. No. 107927. doi: 10.1016/j.porgcoat.2023.107927
|
[16] |
J.K. Wang, L.W. Ma, Z.B. Chen, et al., Multi-channel preparation and high-throughput screening of coating fillers with optimized corrosion sensing and inhibition properties for smart protective coatings, Corros. Sci., 222(2023), art. No. 111390. doi: 10.1016/j.corsci.2023.111390
|
[17] |
L. Cheng, C.B. Liu, H. Wu, H.C. Zhao, and L.P. Wang, A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings, Corros. Sci., 193(2021), art. No. 109891. doi: 10.1016/j.corsci.2021.109891
|
[18] |
J.J. Zhao, A. Santoso, and S.J. Garcia, Small concentrations of NaCl help building stable inhibiting layers from 2, 5-dimercapto-1, 3, 4-thiadiazole (DMTD) on AA2024-T3, Corros. Sci., 225(2023), art. No. 111562. doi: 10.1016/j.corsci.2023.111562
|
[19] |
H. Khosravi, R. Naderi, and B. Ramezanzadeh, Designing an epoxy composite coating having dual-barrier-active self-healing anti-corrosion functions using a multi-functional GO/PDA/MO nano-hybrid, Mater. Today Chem., 27(2023), art. No. 101282. doi: 10.1016/j.mtchem.2022.101282
|
[20] |
X. Liu, Z.Y. Gao, D. Wang, F.J. Yu, B.S. Du, and I. Gitsov, Improving the protection performance of waterborne coatings with a corrosion inhibitor encapsulated in polyaniline-modified halloysite nanotubes, Coatings, 13(2023), No. 10, art. No. 1677. doi: 10.3390/coatings13101677
|
[21] |
K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. De Padova, and G. Hegde, Recent trends and progress in corrosion inhibitors and electrochemical evaluation, Appl. Sci., 13(2023), No. 18, art. No. 10107. doi: 10.3390/app131810107
|
[22] |
D. Xu, Z.B. Pei, X.J. Yang, et al., A review of trends in corrosion-resistant structural steels research-from theoretical simulation to data-driven directions, Materials, 16(2023), No. 9, art. No. 3396. doi: 10.3390/ma16093396
|
[23] |
D.H. Xia, C.M. Deng, D. Macdonald, et al., Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review, J. Mater. Sci. Technol., 112(2022), p. 151. doi: 10.1016/j.jmst.2021.11.004
|
[24] |
J.H. Ahn, Y.S. Jeong, I.T. Kim, S.H. Jeon, and C.H. Park, A method for estimating time-dependent corrosion depth of carbon and weathering steel using an atmospheric corrosion monitor sensor, Sensors, 19(2019), No. 6, art. No. 1416. doi: 10.3390/s19061416
|
[25] |
X.J. Yang, Y. Yang, M.H. Sun, et al., A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology, J. Mater. Sci. Technol., 104(2022), p. 67. doi: 10.1016/j.jmst.2021.05.086
|
[26] |
Q. Li, X.J. Xia, Z.B. Pei, et al., Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method, npj Mater. Degrad., 6(2022), art. No. 1. doi: 10.1038/s41529-021-00211-3
|
[27] |
A. Nishikata, Q.J. Zhu, and E. Tada, Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corros. Sci., 87(2014), p. 80. doi: 10.1016/j.corsci.2014.06.007
|
[28] |
S. Wan, J. Hou, Z.F. Zhang, X.X. Zhang, and Z.H. Dong, Monitoring of atmospheric corrosion and dewing process by interlacing copper electrode sensor, Corros. Sci., 150(2019), p. 246. doi: 10.1016/j.corsci.2019.02.008
|
[29] |
D.H. Xia, S.Z. Song, W.X. Jin, et al., Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 6, p. 1433. doi: 10.1007/s11595-017-1765-9
|
[30] |
D. Mizuno, S. Suzuki, S. Fujita, and N. Hara, Corrosion monitoring and materials selection for automotive environments by using atmospheric corrosion monitor (ACM) sensor, Corros. Sci., 83(2014), p. 217. doi: 10.1016/j.corsci.2014.02.020
|
[31] |
Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
|
[32] |
T. Xie and I.A. Rousseau, Facile tailoring of thermal transition temperatures of epoxy shape memory polymers, Polymer, 50(2009), No. 8, p. 1852. doi: 10.1016/j.polymer.2009.02.035
|
[33] |
K. Gong, M. Wu, and G.X. Liu, Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments, Constr. Build. Mater., 235(2020), art. No. 117440. doi: 10.1016/j.conbuildmat.2019.117440
|
[34] |
J.K. Wang, L.W. Ma, Y. Huang, et al., Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms, Composites Part B, 231(2022), art. No. 109574. doi: 10.1016/j.compositesb.2021.109574
|
[35] |
C. Qiao, Q. Wu, L. Hao, et al., Material selection in making electrochemical impedance spectroscopy sensor for electrolyte thickness measurement in marine atmosphere, Corros. Sci., 221(2023), art. No. 111373. doi: 10.1016/j.corsci.2023.111373
|
[36] |
Z.W. Zou, G.L. Song, Z.M. Wang, and D.J. Zheng, A novel single-electrode AC probe for rapid monitoring of both instantaneous and accumulated electrochemical parameters in corrosion, Electrochim. Acta, 321(2019), art. No. 134664. doi: 10.1016/j.electacta.2019.134664
|
[37] |
Z.B. Pei, X.Q. Cheng, X.J. Yang, et al., Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors, J. Mater. Sci. Technol., 64(2021), p. 214. doi: 10.1016/j.jmst.2020.01.023
|
[38] |
B.F. Fan, J.J. Yang, L. Cao, et al., Revealing the impact of micro-SiO2 filer content on the anti-corrosion performance of water-borne epoxy resin, Polymers, 15(2023), No. 15, art. No. 3273. doi: 10.3390/polym15153273
|
[39] |
L.W. Ma, J.K. Wang, Y.J. Wang, et al., Enhanced active corrosion protection coatings for aluminum alloys with two corrosion inhibitors co-incorporated in nanocontainers, Corros. Sci., 208(2022), art. No. 110663. doi: 10.1016/j.corsci.2022.110663
|
[40] |
R. Raj, Y. Morozov, L.M. Calado, et al., Inhibitor loaded calcium carbonate microparticles for corrosion protection of epoxy-coated carbon steel, Electrochim. Acta, 319(2019), p. 801.
|
[41] |
M. Mahdavian and M.M. Attar, Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies, Corros. Sci., 48(2006), No. 12, p. 4152. doi: 10.1016/j.corsci.2006.03.012
|
[42] |
L.W. Ma, J.K. Wang, D.W. Zhang, et al., Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers, Chem. Eng. J., 404(2021), art. No. 127118. doi: 10.1016/j.cej.2020.127118
|
[43] |
Y.T. Wu, S.G. Wen, K.M. Chen, J.H. Wang, G.Y. Wang, and K. Sun, Enhanced corrosion resistance of waterborne polyurethane containing sulfonated graphene/zinc phosphate composites, Prog. Org. Coat., 132(2019), p. 409. doi: 10.1016/j.porgcoat.2019.04.013
|
[44] |
H.X. Wan, D.D. Song, X.G. Li, D.W. Zhang, J. Gao, and C.W. Du, Effect of zinc phosphate on the corrosion behavior of waterborne acrylic coating/metal interface, Materials, 10(2017), No. 6, art. No. 654. doi: 10.3390/ma10060654
|
[45] |
Z.B. Pei, K. Xiao, L.H. Chen, et al., Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments, Metals, 10(2020), No. 7, art. No. 905. doi: 10.3390/met10070905
|
[46] |
D.D. Song, H.X. Wan, X.H. Tu, and W. Li, A better understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy, Prog. Org. Coat., 142(2020), art. No. 105558. doi: 10.1016/j.porgcoat.2020.105558
|
[47] |
N. Wint, C.M. Griffiths, C.J. Richards, G. Williams, and H.N. McMurray, The role of benzotriazole modified zinc phosphate in preventing corrosion-driven organic coating disbondment on galvanised steel, Corros. Sci., 174(2020), art. No. 108839. doi: 10.1016/j.corsci.2020.108839
|