留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  2269
  • HTML全文浏览量:  166
  • PDF下载量:  34
  • 被引次数: 0
Xiaopeng Chi, Haoyu Liu, Jun Xia, Hang Chen, Xiangtao Yu, Wei Weng, and Shuiping Zhong, Breaking the Fe3O4-wrapped copper microstructure to enhance copper–slag separation, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2312-2325. https://doi.org/10.1007/s12613-024-2861-4
Cite this article as:
Xiaopeng Chi, Haoyu Liu, Jun Xia, Hang Chen, Xiangtao Yu, Wei Weng, and Shuiping Zhong, Breaking the Fe3O4-wrapped copper microstructure to enhance copper–slag separation, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2312-2325. https://doi.org/10.1007/s12613-024-2861-4
引用本文 PDF XML SpringerLink
研究论文

破坏磁铁矿包裹铜锍微观结构强化从铜渣中回收铜


  • 通讯作者:

    翁威    E-mail: wengwei198912@163.com

    衷水平    E-mail: zspcsu@163.com

文章亮点

  • (1) 明确了不同贫化剂贫化效果及铜回收指标的差异性,探析了贫化效果差异化原因。
  • (2) 提出了一种造粒与密度调节协同强化铜冶炼熔渣贫化的新策略
  • (3) 阐释了Fe3O4包裹铜锍微观结构形成机制及新型贫化剂破除包裹形态的机理
  • Fe3O4颗粒析出引起熔渣粘度增加、Fe3O4包裹铜锍结构的形成阻碍铜物相暴露是铜渣高效贫化的主要障碍。本文将黄铁矿–无烟煤压制造粒成复合球团作为还原剂取代商用粉状黄铁矿或无烟煤,用于深度还原熔渣中的Fe3O4以促进渣–锍分离,破除Fe3O4包裹铜锍微观结构以促使铜锍液滴充分暴露。当使用质量分数1%的复合颗粒作为还原剂时,铜锍微粒从25 μm长大到毫米级尺寸,底部渣含铜质量分数从1.2%显著富集到4.5%。密度泛函理论计算结果表明,Fe3O4包裹铜结构的形成是由于Cu2S优先粘附在Fe3O4颗粒上。X射线光电子能谱、傅里叶变换红外光谱仪(FTIR)和拉曼光谱结果均表明,Fe3O4高效还原为FeO可以降低熔渣中固相的体积分数,促进硅酸盐网络结构的解聚及熔渣粘度的降低。相应地,铜锍沉降聚集更易进行,铜–渣分离效率提高,铜的回收率得以提升。研究结果为熔渣中铜的原位富集提供了新的思路。
  • Research Article

    Breaking the Fe3O4-wrapped copper microstructure to enhance copper–slag separation

    + Author Affiliations
    • The precipitation of Fe3O4 particles and the accompanied formation of Fe3O4-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates. Herein, the commercial powdery pyrite or anthracite is replaced with pyrite–anthracite pellets as the reductants to remove a large amount of Fe3O4 particles in the molten slag, resulting in a deep fracture in the Fe3O4-wrapped copper microstructure and the full exposure of the copper matte cores. When 1wt% composite pellet is used as the reductant, the copper matte droplets are enlarged greatly from 25 μm to a size observable by the naked eye, with the copper content being enriched remarkably from 1.2wt% to 4.5wt%. Density functional theory calculation results imply that the formation of the Fe3O4-wrapped copper structure is due to the preferential adhesion of Cu2S on the Fe3O4 particles. X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer (FTIR), and Raman spectroscopy results all reveal that the high-efficiency conversion of Fe3O4 to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure. As a consequence, the settling of copper matte droplets is enhanced due to the lowered slag viscosity, contributing to the high efficiency of copper–slag separation for copper recovery. The results provide new insights into the enhanced in-situ enrichment of copper from molten slag.
    • loading
    • [1]
      S.Q. Nie, Y. Xin, Q.Y. Wang, et al., Three-dimensional structural Cu6Sn5/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1171. doi: 10.1007/s12613-022-2591-4
      [2]
      X. Li, B.Z. Ma, C.Y. Wang, D. Hu, Y.W. Lü, and Y.Q. Chen, Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 989. doi: 10.1007/s12613-022-2552-y
      [3]
      D. Wang, Q. Ma, K.H. Tian, C.Q. Duan, Z.Y. Wang, and Y.G. Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1666. doi: 10.1007/s12613-021-2286-2
      [4]
      M. Hao, L.B. Tang, P. Wang, et al., Mapping China’s copper cycle from 1950–2015: Role of international trade and secondary resources, Resour. Conserv. Recycl., 188(2023), art. No. 106700. doi: 10.1016/j.resconrec.2022.106700
      [5]
      S. Liu, W. Liu, Q.Y. Tan, J.H. Li, W.Q. Qin, and C.R. Yang, The impact of China’s import ban on global copper scrap flow network and the domestic copper sustainability, Resour. Conserv. Recycl., 169(2021), art. No. 105525. doi: 10.1016/j.resconrec.2021.105525
      [6]
      R. Sridhar, J.M. Toguri, and S. Simeonov, Copper losses and thermodynamic considerations in copper smelting, Metall. Mater. Trans. B, 28(1997), No. 2, p. 191. doi: 10.1007/s11663-997-0084-5
      [7]
      Q.M. Wang, S.S. Wang, M. Tian, D.X. Tang, Q.H. Tian, and X.Y. Guo, Relationship between copper content of slag and matte in the SKS copper smelting process, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 301. doi: 10.1007/s12613-019-1738-4
      [8]
      Z. Zivkovic, P. Djordjevic, and N. Mitevska, Contribution to the examination of the mechanisms of copper loss with the slag in the process of sulfide concentrates smelting, Min. Metall. Explor., 37(2020), No. 1, p. 267.
      [9]
      G.R. Qu, Y.G. Wei, B. Li, H. Wang, Y.D. Yang, and A. McLean, Distribution of copper and iron components with hydrogen reduction of copper slag, J. Alloys Compd., 824(2020), art. No. 153910. doi: 10.1016/j.jallcom.2020.153910
      [10]
      H.P. Zhang, B. Li, A. McLean, Y.G. Wei, H. Wang, and Z.L. Ye, Investigation of reducing copper slag using waste motor oil to recover matte, Metall. Mater. Trans. B, 54(2023), No. 1, p. 178. doi: 10.1007/s11663-022-02678-0
      [11]
      S.W. Zhou, Y.G. Wei, S.Y. Zhang, et al., Reduction of copper smelting slag using waste cooking oil, J. Cleaner. Prod., 236(2019), art. No. 117668. doi: 10.1016/j.jclepro.2019.117668
      [12]
      S.W. Zhou, Y.G. Wei, Y. Shi, B. Li, and H. Wang, Characterization and recovery of copper from converter copper slag via smelting separation, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2458. doi: 10.1007/s11663-018-1364-y
      [13]
      Z.L. Ye, G.P. Dai, B. Zhang, et al., Apparent viscosity evolution of copper converter slag during a reduction process, Min. Metall. Explor., 39(2022), No. 6, p. 2529.
      [14]
      F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522. doi: 10.1007/s12613-021-2306-2
      [15]
      E. De Wilde, I. Bellemans, M. Campforts, et al., Study of the effect of spinel composition on metallic copper losses in slags, J. Sustainable Metall., 3(2017), No. 2, p. 416. doi: 10.1007/s40831-016-0106-0
      [16]
      J. Isaksson, A. Andersson, T. Vikström, A. Lennartsson, and C. Samuelsson, Improved settling mechanisms of an industrial copper smelting slag by CaO modification, J. Sustainable Metall., 9(2023), No. 3, p. 1378. doi: 10.1007/s40831-023-00733-x
      [17]
      H.Y. Wang, R. Zhu, K. Dong, S.Q. Zhang, Y. Wang, and X.Y. Lan, Effect of injection of different gases on removal of arsenic in form of dust from molten copper smelting slag prior to recovery process, Trans. Nonferrous Met. Soc. China, 33(2023), No. 4, p. 1258. doi: 10.1016/S1003-6326(23)66180-1
      [18]
      X. Gao, Z. Chen, J.J. Shi, P. Taskinen, and A. Jokilaakso, Effect of cooling rate and slag modification on the copper matte in smelting slag, Min. Metall. Explor., 37(2020), No. 5, p. 1593.
      [19]
      A. Sarrafi, B. Rahmati, H.R. Hassani, and H.H.A. Shirazi, Recovery of copper from reverberatory furnace slag by flotation, Miner. Eng., 17(2004), No. 3, p. 457. doi: 10.1016/j.mineng.2003.10.018
      [20]
      B. Inge, D.W. Evelien, M. Nele, and V. Kim, Metal losses in pyrometallurgical operations: A review, Adv. Colloid Interface Sci., 255(2018), p. 47. doi: 10.1016/j.cis.2017.08.001
      [21]
      Z.Q. Guo, D.Q. Zhu, J. Pan, F. Zhang, and C.C. Yang, Industrial tests to modify molten copper slag for improvement of copper recovery, JOM, 70(2018), No. 4, p. 533. doi: 10.1007/s11837-017-2671-5
      [22]
      H.P. Zhang, B. Li, Y.G. Wei, and H. Wang, The settling behavior of matte particles in copper slag and the new technology of copper slag cleaning, J. Mater. Res. Technol., 15(2021), p. 6216. doi: 10.1016/j.jmrt.2021.11.061
      [23]
      H.H. Zhou, G.J. Liu, L.Q. Zhang, and C.C. Zhou, Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process, J. Hazard. Mater., 401(2021), art. No. 123293. doi: 10.1016/j.jhazmat.2020.123293
      [24]
      X.S. Guo, Z.Y. Li, J.C. Han, D. Yang, and T.C. Sun, Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 455. doi: 10.1007/s12613-021-2389-9
      [25]
      H.P. Zhang, B. Li, Y.G. Wei, H. Wang, Y.D. Yang, and A. McLean, Reduction of magnetite from copper smelting slag in the presence of a graphite rod, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2663. doi: 10.1007/s11663-020-01963-0
      [26]
      H.Q. Zhang, G.H. Chen, X. Cai, et al., The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder, J. Hazard. Mater., 420(2021), art. No. 126561. doi: 10.1016/j.jhazmat.2021.126561
      [27]
      B.J. Zhang, T.A. Zhang, Z.H. Dou, and D.L. Zhang, Effect of vortex stirring on the dilution of copper slag, J. Wuhan Univ. Technol. Mater Sci Ed, 37(2022), No. 4, p. 699. doi: 10.1007/s11595-022-2584-1
      [28]
      N. Dosmukhamedov, M. Egizekov, E. Zholdasbay, and V. Kaplan, Metal recovery from converter slags using a sulfiding agent, JOM, 70(2018), No. 10, p. 2400. doi: 10.1007/s11837-018-3093-8
      [29]
      S.W. Zhou, Y.G. Wei, B. Li, and H. Wang, Effect of iron phase evolution on copper separation from slag via coal-based reduction, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3086. doi: 10.1007/s11663-018-1379-4
      [30]
      B.J. Zhang, T.A. Zhang, L.P. Niu, N.S. Liu, Z.H. Dou, and Z.Q. Li, Moderate dilution of copper slag by natural gas, JOM, 70(2018), No. 1, p. 47. doi: 10.1007/s11837-017-2670-6
      [31]
      J. Zhang, Y.H. Qi, D.L. Yan, and H.C. Xu, A new technology for copper slag reduction to get molten iron and copper matte, J. Iron Steel Res. Int., 22(2015), No. 5, p. 396. doi: 10.1016/S1006-706X(15)30018-2
      [32]
      I.P. Plotnikov, A.A. Komkov, and S.V. Bystrov, Behavior of copper and sulfur during high-temperature sulfurization of copper-smelting slags with elemental sulfur, Metallurgist, 67(2023), No. 3, p. 476.
      [33]
      F. Yin, P. Xing, Q. Li, C.Y. Wang, and Z. Wang, Magnetic separation-sulphuric acid leaching of Cu–Co–Fe matte obtained from copper converter slag for recovering Cu and Co, Hydrometallurgy, 149(2014), p. 189. doi: 10.1016/j.hydromet.2014.08.007
      [34]
      S. Hughes, Applying ausmelt technology to recover Cu, Ni, and Co from slags, JOM, 52(2000), No. 8, p. 30. doi: 10.1007/s11837-000-0170-5
      [35]
      J. Isaksson, A. Andersson, A. Lennartsson, and C. Samuelsson, Interactions of crucible materials with an FeO x–SiO2–Al2O3 melt and their influence on viscosity measurements, Metall. Mater. Trans. B, 54(2023), No. 6, p. 3526. doi: 10.1007/s11663-023-02930-1
      [36]
      H. Saigo, D.B. Kc, and N. Saito, Einstein–Roscoe regression for the slag viscosity prediction problem in steelmaking, Sci. Rep., 12(2022), No. 1, art. No. 6541. doi: 10.1038/s41598-022-10278-w
      [37]
      T.S. Kim and J.H. Park, Structure–viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031. doi: 10.2355/isijinternational.54.2031
      [38]
      Y. Shi, Y.G. Wei, S.W. Zhou, B. Li, Y.D. Yang, and H. Wang, Effect of B2O3 content on the viscosity of copper slag, J. Alloys Compd., 822(2020), art. No. 153478. doi: 10.1016/j.jallcom.2019.153478
      [39]
      A. Rusen, A. Geveci, Y. Ali Topkaya, and B. Derin, Effects of some additives on copper losses to matte smelting slag, JOM, 68(2016), No. 9, p. 2323. doi: 10.1007/s11837-016-1825-1
      [40]
      P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136(1964), No. 3B, p. 864. doi: 10.1103/PhysRev.136.B864
      [41]
      W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133. doi: 10.1103/PhysRev.140.A1133
      [42]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B: Condens. Matter, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
      [43]
      S.P. Zhong, H.L. Zhu, L. Yang, X.P. Chi, W. Tan, and W. Weng, Activating bulk nickel foam for the electrochemical oxidization of ethanol by anchoring MnO2@Au nanorods, J. Mater. Chem. A, 11(2023), No. 15, p. 8101. doi: 10.1039/D3TA00367A
      [44]
      W. Weng, J.X. Xiao, Y.J. Shen, X.X. Liang, T. Lv, and W. Xiao, Molten salt electrochemical modulation of iron–carbon–nitrogen for lithium–sulfur batteries, Angew. Chem. Int. Ed., 60(2021), No. 47, p. 24905. doi: 10.1002/anie.202111707
      [45]
      J.K. Nørskov, T. Bligaard, A. Logadottir, et al., Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152(2005), art. No. J23. doi: 10.1149/1.1856988
      [46]
      J.K. Nørskov, J. Rossmeisl, A. Logadottir, et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 108(2004), No. 46, p. 17886. doi: 10.1021/jp047349j
      [47]
      B. Zhang, J. Liu, J.S. Wang, et al., Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution, Nano Energy, 37(2017), p. 74. doi: 10.1016/j.nanoen.2017.05.011
      [48]
      Y. Ke, N. Peng, K. Xue, et al., Sulfidation behavior and mechanism of zinc silicate roasted with pyrite, Appl. Surf. Sci., 435(2018), p. 1011. doi: 10.1016/j.apsusc.2017.11.202
      [49]
      K. Wang, Y. Liu, J. Hao, Z.H. Dou, G.Z. Lv, and T.A. Zhang, A novel slag cleaning method to recover copper from molten copper converter slag, Trans. Nonferrous Met. Soc. China, 33(2023), No. 8, p. 2511. doi: 10.1016/S1003-6326(23)66277-6
      [50]
      H.M. Ferreira, E.B. Lopes, J.F. Malta, et al., Preparation and densification of bulk pyrite, FeS2, J. Phys. Chem. Solids, 159(2021), art. No. 110296. doi: 10.1016/j.jpcs.2021.110296
      [51]
      M. Kuosa, B. Ekberg, L. Tanttu, T. Jauhiainen, and A. Häkkinen, Performance comparison of anthracite filter media of different origin in the removal of organic traces from copper electrolyte, Int. J. Miner. Process., 163(2017), p. 24. doi: 10.1016/j.minpro.2017.04.006
      [52]
      A. Rajan, M. Sharma, and N.K. Sahu, Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia, Sci. Rep., 10(2020), No. 1, art. No. 15045. doi: 10.1038/s41598-020-71703-6
      [53]
      R. Jain and S. Gulati, Influence of Fe2+ substitution on FTIR and Raman spectra of Mn ferrite nanoparticles, Vib. Spectrosc., 126(2023), art. No. 103540. doi: 10.1016/j.vibspec.2023.103540
      [54]
      R.L. Zheng, J.F. Lü, W.F. Song, et al., Metallurgical properties of CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system pertaining to spent automotive catalyst smelting, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 886. doi: 10.1007/s12613-022-2569-2
      [55]
      S.F. Ma, K.J. Li, J.L. Zhang, et al., The effects of CaO and FeO on the structure and properties of aluminosilicate system: A molecular dynamics study, J. Mol. Liq., 325(2021), art. No. 115106. doi: 10.1016/j.molliq.2020.115106
      [56]
      T. Talapaneni, N. Yedla, S. Pal, and S. Sarkar, Experimental and theoretical studies on the viscosity–structure correlation for high alumina–silicate melts, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1450. doi: 10.1007/s11663-017-0963-3

    Catalog


    • /

      返回文章
      返回