留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(16)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1806
  • HTML全文浏览量:  353
  • PDF下载量:  104
  • 被引次数: 0
Tao Wang, Weiwei Ye, Liyuan Liu, Kai Liu, Naisheng Jiang,  and Xianhui Feng, Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 611-627. https://doi.org/10.1007/s12613-024-2864-1
Cite this article as:
Tao Wang, Weiwei Ye, Liyuan Liu, Kai Liu, Naisheng Jiang,  and Xianhui Feng, Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 611-627. https://doi.org/10.1007/s12613-024-2864-1
引用本文 PDF XML SpringerLink
特约综述

深部高应力储能岩石扰动力学行为研究现状与展望


  • 通讯作者:

    刘力源    E-mail: liuliyuan@ustb.edu.cn

文章亮点

  • (1)通过对蓄能岩石扰动力学行为研究现状的梳理,提出以岩石显微组构特征实验研究为基础,建立岩石内禀特性与岩石微观结构的相关关系。
  • (2)从岩石微观结构形变非相容性角度分析岩石封闭应力的产生机制,并沟通岩石封闭应力和能量蓄积之间的联系。
  • (3)指出通过设计采动岩石力学实验,研究自蓄能岩石对工程扰动作用的力学响应特征,并从能量角度分析自蓄能岩石损伤破裂的能量转化与释放过程机制,进而揭示深部高应力岩石蓄能微观机理以及自蓄能岩石能量扰动释放特性。
  • 本文系统综述了蓄能岩石扰动力学行为研究现状与未来研究方向。首先,对深部高应力岩石扰动力学的实验装置、实验方法和理论等内容进行了梳理,并从能量角度综述了学者们对于深部岩石破坏变形的研究。然后,以深部高应力地层硬岩的岩爆、岩芯饼化等特殊力学现象为背景,从岩石微观组构的视角研究岩石蓄能机制,展示了岩石显微结构分析和岩石残余应力等相关研究的最新研究成果。在此基础上,综述了考虑岩石自蓄能的深部岩石力学响应与能量耗散机制的研究进展。最后,总结了现阶段深部蓄能岩石扰动破坏机理研究的不足,并对未来研究提出了展望。该工作可为深部高应力岩石蓄能微观机理以及自蓄能岩石能量扰动释放特性理论研究提供新的拓展思路。
  • Invited Review

    Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects

    + Author Affiliations
    • This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances. Firstly, the experimental apparatus, methods, and theories related to the disturbance dynamics of deep, high-stress rock are reviewed, followed by the introduction of scholars’ research on deep rock deformation and failure from an energy perspective. Subsequently, with a backdrop of high-stress phenomena in deep hard rock, such as rock bursts and core disking, we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks. Thereafter, the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected. Finally, the insufficient aspects in the current research on the disturbance and failure mechanisms in deep, highly stressed rock formations are summarized, and prospects for future research are provided. This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions.
    • loading
    • [1]
      L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
      [2]
      H.P. Xie, J. Lu, C.B. Li, M.H. Li, and M.Z. Gao, Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review, Int. J. Min. Sci. Technol., 32(2022), No. 5, p. 915. doi: 10.1016/j.ijmst.2022.05.006
      [3]
      Y. Ju, H.P. Xie, Z.M. Zheng, et al., Visualization of the complex structure and stress field inside rock by means of 3D printing technology, Chin. Sci. Bull., 59(2014), No. 36, p. 5354. doi: 10.1007/s11434-014-0579-9
      [4]
      Q.H. Qian, The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness, J. East China Univ. Technol. Nat. Sci., 27(2004), No. 1, p. 1.
      [5]
      M.C. He, Conception system and evaluation indexes for deep engineering, Chin. J. Rock Mech. Eng., 24(2005), No. 16, p. 2854.
      [6]
      H.P. Xie, H.W. Zhou, D.J. Xue, H.W. Wang, R. Zhang, and F. Gao, Research and consideration on deep coal mining and critical mining depth, J. China Coal Soc., 37(2012), No. 4, p. 535.
      [7]
      M.F. Cai, G.Y. Kong, and L.H. Jia, Criterion of energy carastrophe for rock project system failure in underground engineering, J. Univ. Sci. Technol. Beijing, 19(1997), No. 4, p. 325.
      [8]
      T.B. Zhao, W.Y. Guo, Y.L. Tan, C.P. Lu, and C.W. Wang, Case histories of rock bursts under complicated geological conditions, Bull. Eng. Geol. Environ., 77(2018), No. 4, p. 1529. doi: 10.1007/s10064-017-1014-7
      [9]
      X.Q. Liu, G. Wang, L.B. Song, G.S. Han, W.Z. Chen, and H. Chen, A new rockburst criterion of stress–strength ratio considering stress distribution of surrounding rock, Bull. Eng. Geol. Environ., 82(2023), No. 1, art. No. 29. doi: 10.1007/s10064-022-03042-x
      [10]
      D.Y. Li, Z.D. Liu, D.J. Armaghani, P. Xiao, and J. Zhou, Novel ensemble tree solution for rockburst prediction using deep forest, Mathematics, 10(2022), No. 5, art. No. 787. doi: 10.3390/math10050787
      [11]
      Y. Yu, G.L. Feng, C.J. Xu, B.R. Chen, D.X. Geng, and B.T. Zhu, Quantitative threshold of energy fractal dimension for immediate rock burst warning in deep tunnel: A case study, Lithosphere, 2021(2022), No. Special 4, art. No. 1699273. doi: 10.2113/2022/1699273
      [12]
      H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003.
      [13]
      Y.M. Song, Y.D. Jiang, S.P. Ma, X.B. Yang, and T.B. Zhao, Evolution of deformation fields and energy in whole process of rock failure, Rock Soil Mech., 33(2012), No. 5, p. 1352.
      [14]
      M.Z. Gao, M.Y. Wang, J. Xie, et al. , In-situ disturbed mechanical behavior of deep coal rock, J. China Coal Soc., 45(2020), No. 8, p. 2691.
      [15]
      S.L. Li, X.T. Feng, Y.J. Wang, and N.G. Yang, Evaluation of rockburst proneness in a deep hard rock mine, J. Northeast Univ., 22(2001), No. 1, p. 60.
      [16]
      P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875. doi: 10.1007/s12613-020-2237-3
      [17]
      C.A. Tang, A.A.G. Webb, W.B. Moore, Y.Y. Wang, T.H. Ma, and T.T. Chen, Breaking Earth’s shell into a global plate network, Nat. Commun., 11(2020), No.1, art. No. 3621. doi: 10.1038/s41467-020-17480-2
      [18]
      P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
      [19]
      X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
      [20]
      X.B. Li, Y.J. Zuo, and C.D. Ma, Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading, Chin. J. Rock Mech. Eng., 24(2005), No. 16, p. 2814.
      [21]
      L.Y. Liu, L. Zhang, and H.G. Ji, Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields, Chin. J. Eng., 44(2022), No. 4, p. 516.
      [22]
      L.Y. Liu, H.G. Ji, T. Wang, F. Pei, and D.L. Quan, Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress, Chin. J. Eng., 42(2020), No. 6, p. 715.
      [23]
      T. Wang, W.W. Ye, L.Y. Liu, et al., Impact of crack inclination angle on the splitting failure and energy analysis of fine-grained sandstone, Appl. Sci., 13(2023), No. 13, art. No. 7834. doi: 10.3390/app13137834
      [24]
      Z.Q. Yue, Expansion power of compressed micro fluid inclusions as the cause of rockburst, Mech. Eng., 37(2015), No. 3, p. 287. doi: 10.6052/1000-0879-15-089
      [25]
      X.T. Feng, C.X. Yang, R. Kong, et al., Excavation-induced deep hard rock fracturing: Methodology and applications, J. Rock Mech. Geotech. Eng., 14(2022), No. 1, p. 1. doi: 10.1016/j.jrmge.2021.12.003
      [26]
      H. Yang, H.F. Duan, and J.B. Zhu, Ultrasonic P-wave propagation through water-filled rock joint: An experimental investigation, J. Appl. Geophys., 169(2019), p. 1. doi: 10.1016/j.jappgeo.2019.06.014
      [27]
      G.J. Cui, C.Q. Zhang, H. Zhou, et al., Development and application of multifunctional shear test apparatus for rock discontinuity under dynamic disturbance loading, Rock Soil Mech., 43(2022), No. 6, p. 1727. doi: 10.16285/j.rsm.2021.1592
      [28]
      W. Wu, H.B. Li, and J. Zhao, Dynamic responses of non-welded and welded rock fractures and implications for P-wave attenuation in a rock mass, Int. J. Rock Mech. Min. Sci., 77(2015), p. 174. doi: 10.1016/j.ijrmms.2015.03.035
      [29]
      W. Wu and J. Zhao, Effect of water content on P-wave attenuation across a rock fracture filled with granular materials, Rock Mech. Rock Eng., 48(2015), No. 2, p. 867. doi: 10.1007/s00603-014-0606-9
      [30]
      Y. Xu and F. Dai, Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments, Rock Mech. Rock Eng., 51(2018), No. 3, p. 747. doi: 10.1007/s00603-017-1364-2
      [31]
      H.B. Du, F. Dai, M.D. Wei, A. Li, and Z.L. Yan, Dynamic compression–shear response and failure criterion of rocks with hydrostatic confining pressure: An experimental investigation, Rock Mech. Rock Eng., 54(2021), No. 2, p. 955. doi: 10.1007/s00603-020-02302-0
      [32]
      L. Wang, M.D. Wei, and W. Wu, Control of dynamic failure of brittle rock using expansive mortar, Acta Geotech., 17(2022), No. 12, p. 5829. doi: 10.1007/s11440-022-01565-x
      [33]
      K.W. Xia and W. Yao, Dynamic rock tests using split Hopkinson (Kolsky) bar system–A review, J. Rock Mech. Geotech. Eng., 7(2015), No. 1, p. 27. doi: 10.1016/j.jrmge.2014.07.008
      [34]
      Q.B. Zhang and J. Zhao, A review of dynamic experimental techniques and mechanical behaviour of rock materials, Rock Mech. Rock Eng., 47(2014), No. 4, p. 1411. doi: 10.1007/s00603-013-0463-y
      [35]
      K.W. Xia, S. Wang, Y. Xu, R. Chen, and B.B. Wu, Advances in experimental studies for deep rock dynamics, Chin. J. Rock Mech. Eng., 40(2021), No. 3, p. 448.
      [36]
      M.H. Ju, J.C. Li, X.F. Li, and J. Zhao, Fracture surface morphology of brittle geomaterials influenced by loading rate and grain size, Int. J. Impact Eng., 133(2019), No. C, art. No. 103363. doi: 10.1016/j.ijimpeng.2019.103363
      [37]
      Y.B. Wang and R.S. Yang, Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test, Eng. Fract. Mech., 184(2017), p. 319. doi: 10.1016/j.engfracmech.2017.09.006
      [38]
      Y.X. Zhao, S. Gong, X.J. Hao, Y. Peng, and Y.D. Jiang, Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments, Eng. Fract. Mech., 178(2017), p. 375. doi: 10.1016/j.engfracmech.2017.03.011
      [39]
      D.J. Frew, S.A. Akers, W. Chen, and M.L. Green, Development of a dynamic triaxial Kolsky bar, Meas. Sci. Technol., 21(2010), No. 10, art. No. 105704. doi: 10.1088/0957-0233/21/10/105704
      [40]
      F.Q. Gong, X.F. Si, X.B. Li, and S.Y. Wang, Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar, Int. J. Rock Mech. Min. Sci., 113(2019), p. 211. doi: 10.1016/j.ijrmms.2018.12.005
      [41]
      B.B. Wu, R. Chen, and K.W. Xia, Dynamic tensile failure of rocks under static pre-tension, Int. J. Rock Mech. Min. Sci., 80(2015), p. 12. doi: 10.1016/j.ijrmms.2015.09.003
      [42]
      W. Yao, K. Xia, and T. Zhang, Dynamic fracture test of Laurentian granite subjected to hydrostatic pressure, Exp. Mech., 59(2019), No. 2, p. 245. doi: 10.1007/s11340-018-00437-4
      [43]
      S.L. Xu, J.F. Shan, L. Zhang, et al., Dynamic compression behaviors of concrete under true triaxial confinement: An experimental technique, Mech. Mater., 140(2020), art. No. 103220. doi: 10.1016/j.mechmat.2019.103220
      [44]
      K. Liu, Q.B. Zhang, G. Wu, J.C. Li, and J. Zhao, Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar, Rock Mech. Rock Eng., 52(2019), No. 7, p. 2175. doi: 10.1007/s00603-018-1691-y
      [45]
      Z.L. Zhou, X. Cai, X.B. Li, W.Z. Cao, and X.M. Du, Dynamic response and energy evolution of sandstone under coupled static–dynamic compression: Insights from experimental study into deep rock engineering applications, Rock Mech. Rock Eng., 53(2020), No. 3, p. 1305. doi: 10.1007/s00603-019-01980-9
      [46]
      H.B. Du, F. Dai, Y. Liu, Y. Xu, and M.D. Wei, Dynamic response and failure mechanism of hydrostatically pressurized rocks subjected to high loading rate impacting, Soil Dyn. Earthquake Eng., 129(2020), art. No. 105927. doi: 10.1016/j.soildyn.2019.105927
      [47]
      X.S. Shi, D.A. Liu, W. Yao, et al., Investigation of the anisotropy of black shale in dynamic tensile strength, Arabian J. Geosci., 11(2018), No. 2, art. No. 42. doi: 10.1007/s12517-018-3384-y
      [48]
      W. Yao, K.W. Xia, and A.K. Jha, Experimental study of dynamic bending failure of Laurentian granite: Loading rate and pre-load effects, Can. Geotech. J., 56(2019), No. 2, p. 228. doi: 10.1139/cgj-2017-0707
      [49]
      U.S. Lindholm, L.M. Yeakley, and A. Nagy, A Study of the Dynamic Strength and Fracture Properties of Rock, Southwest Research Institute, San Antonio, 1972.
      [50]
      U.S. Lindholm, L.M. Yeakley, and A. Nagy, The dynamic strength and fracture properties of dresser basalt, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11(1974), No. 5, p. 181. doi: 10.1016/0148-9062(74)90885-7
      [51]
      J. Jr Lankford, Dynamic strength of oil shale, Soc. Petrol. Eng. J., 16(1976), No. 01, p. 17. doi: 10.2118/5327-PA
      [52]
      K. Sato, M. Kawakita, and S. Kinoshita, The dynamic fracture properties of rocks under confining pressure, Mem. Fac. Eng. Hokkaido Univ., 15(1981), No. 4, p. 467.
      [53]
      L.E. Malvern, and C.A. Ross, Dynamic response of concrete and concrete structures, [in] First Annual Technical Report, AFOSR, 1984.
      [54]
      C. Albertini and M. Montagnani, Study of the true tensile stress–strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle, J. Phys. IV, 4(1994), No. C8, p. C8-113. doi: 10.1051/jp4:1994817
      [55]
      W. Chen and G. Ravichandran, Dynamic compressive behaviour of ceramics under lateral confinement, J. Phys. IV, 4(1994), No. C8, p. C8-177. doi: 10.1051/jp4:1994825
      [56]
      W. Chen and F. Lu, A technique for dynamic proportional multiaxial compression on soft materials, Exp. Mech., 40(2000), No. 2, p. 226. doi: 10.1007/BF02325050
      [57]
      E. Hanina, D. Rittel, and Z. Rosenberg, Pressure sensitivity of adiabatic shear banding in metals, Appl. Phys. Lett., 90(2007), No. 2, art. No. 021915. doi: 10.1063/1.2430923
      [58]
      X.B. Li, Z.L. Zhou, T.S. Lok, L. Hong, and T.B. Yin, Innovative testing technique of rock subjected to coupled static and dynamic loads, Int. J. Rock Mech. Min. Sci., 45(2008), No. 5, p. 739. doi: 10.1016/j.ijrmms.2007.08.013
      [59]
      E. Cadoni and C. Albertini, Modified Hopkinson bar technologies applied to the high strain rate rock tests, [in] Y.X. Zhou and J. Zhao eds., Advances in Rock Dynamics and Applications, 1st ed., CRC Press, 2011, p. 79.
      [60]
      Q. Fang, Z. Ruan, C.C. Zhai, X.Q. Jiang, L. Chen, and W.M. Fang, Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature, Chin. J. Rock Mech. Eng., 31(2012), No. 9, p. 1756.
      [61]
      Z.L. Zhou, X.B. Li, Y. Zou, Y.H. Jiang, and G.N. Li, Dynamic Brazilian tests of granite under coupled static and dynamic loads, Rock Mech. Rock Eng., 47(2014), No. 2, p. 495. doi: 10.1007/s00603-013-0441-4
      [62]
      J. Zhao, P.G. Ranjith, N. Khalili, et al. , Three Dimensionally Compressed and Monitored Hopkinson Bar, ARC Linkage Infrastructure, Australian, 2015, LE150100058. https://dataportal.arc.gov.au/NCGP/Web/Grant/Grant/LE150100058
      [63]
      R. Chen, K. Li, K.W. Xia, Y.L. Lin, W. Yao, and F.Y. Lu, Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method, Rock Mech. Rock Eng., 49(2016), No. 10, p. 3865. doi: 10.1007/s00603-016-0958-4
      [64]
      B.B. Wu, W. Yao, and K.W. Xia, An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement, Rock Mech. Rock Eng., 49(2016), No. 10, p. 3855. doi: 10.1007/s00603-016-0946-8
      [65]
      R. Chen, W. Yao, F. Lu, and K. Xia, Evaluation of the stress equilibrium condition in axially constrained triaxial SHPB tests, Exp. Mech., 58(2018), No. 3, p. 527. doi: 10.1007/s11340-017-0344-5
      [66]
      W.C. Zhu, S.H. Li, S. Li, and L.L. Niu, Influence of dynamic disturbance on the creep of sandstone: An experimental study, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1023. doi: 10.1007/s00603-018-1642-7
      [67]
      W. Wang, S.W. Zhang, K. Liu, S. Wang, D.Y. Li, and H.M. Li, Experimental study on dynamic strength characteristics of water-saturated coal under true triaxial static-dynamic combination loadings, Chin. J. Rock Mech. Eng., 38(2019), No. 10, p. 2010.
      [68]
      Y.B. Li, Y. Zhai, C.S. Wang, F.D. Meng, and M. Lu, Mechanical properties of Beishan granite under complex dynamic loads after thermal treatment, Eng. Geol., 267(2020), art. No. 105481. doi: 10.1016/j.enggeo.2020.105481
      [69]
      H.B. Du, F. Dai, Y. Xu, Z.L. Yan, and M.D. Wei, Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression–shear impacting, Int. J. Mech. Sci., 165(2020), art. No. 105219. doi: 10.1016/j.ijmecsci.2019.105219
      [70]
      S.M. Wang, X.R. Xiong, Y.S. Liu, et al., Stress–strain relationship of sandstone under confining pressure with repetitive impact, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 2, art. No. 39. doi: 10.1007/s40948-021-00250-9
      [71]
      W. Yao, X. Li, K.W. Xia, and M. Hokka, Dynamic flexural failure of rocks under hydrostatic pressure: Laboratory test and theoretical modeling, Int. J. Impact Eng., 156(2021), art. No. 103946. doi: 10.1016/j.ijimpeng.2021.103946
      [72]
      Q.Q. Zhu, D.Y. Li, and W.J. Wang, Mechanical behavior and permeability evolution of sandstone with confining pressure after dynamic loading, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 3, art. No. 81. doi: 10.1007/s40948-021-00283-0
      [73]
      Y. Xue, X.H. Liu, R. Zhao, Y. Zheng, and X. Gui, Investigation on triaxial dynamic model based on the energy theory of bedding coal rock under triaxial impact compression, Shock Vib., 2021(2021), art. No. 5537341. doi: 10.1155/2021/5537341
      [74]
      G.L. Zhao, X. Li, Y. Xu, and K.W. Xia, A modified triaxial split Hopkinson pressure bar (SHPB) system for quantifying the dynamic compressive response of porous rocks subjected to coupled hydraulic-mechanical loading, Geomech. Geophys. Geo-Energy Geo-Resour., 8(2022), No. 1, art. No. 29. doi: 10.1007/s40948-021-00335-5
      [75]
      W. You, F. Dai, Y. Liu, and Z.L. Yan, Effect of confining pressure and strain rate on mechanical behaviors and failure characteristics of sandstone containing a pre-existing flaw, Rock Mech. Rock Eng., 55(2022), No. 4, p. 2091. doi: 10.1007/s00603-022-02772-4
      [76]
      C. Ma, C.J. Zhu, J.X. Zhou, J. Ren, and Q. Yu, Dynamic response and failure characteristics of combined rocks under confining pressure, Sci. Rep., 12(2022), No. 1, art. No. 12187. doi: 10.1038/s41598-022-16299-9
      [77]
      T. Li, G. Li, Y.Q. Ding, et al., Impact response of unsaturated sandy soil under triaxial stress, Int. J. Impact Eng., 160(2022), art. No. 104062. doi: 10.1016/j.ijimpeng.2021.104062
      [78]
      N. Luo, X.R. Fan, X.L. Cao, C. Zhai, and T. Han, Dynamic mechanical properties and constitutive model of shale with different bedding under triaxial impact test, J. Petrol. Sci. Eng., 216(2022), art. No. 110758. doi: 10.1016/j.petrol.2022.110758
      [79]
      W.B. Fan, J.W. Zhang, Y. Yang, Y. Zhang, X.K. Dong, and Y.L. Xing, Study on the mechanical behavior and constitutive model of layered sandstone under triaxial dynamic loading, Mathematics, 11(2023), No. 8, art. No. 1959. doi: 10.3390/math11081959
      [80]
      J. Wei, H.L. Liao, N. Li, et al., Effect of the three-dimensional static pre-stress on the dynamic behaviours of conglomerate: True triaxial Hopkinson pressure bar tests, Geoenergy Sci. Eng., 227(2023), art. No. 211810. doi: 10.1016/j.geoen.2023.211810
      [81]
      X.K. Xie, J.C. Li, and Y.L. Zheng, Experimental study on dynamic mechanical and failure behavior of a jointed rock mass, Int. J. Rock Mech. Min. Sci., 168(2023), art. No. 105415. doi: 10.1016/j.ijrmms.2023.105415
      [82]
      X.Y. Wang, Z.Y. Liu, X.C. Gao, P.F. Li, and B. Dong, Dynamic characteristics and energy evolution of granite subjected to coupled static–cyclic impact loading, Geomech. Geophys. Geo-Energy Geo-Resour., 9(2023), No. 1, art. No. 62. doi: 10.1007/s40948-023-00593-5
      [83]
      X.T. Feng, Y. Yu, G.L. Feng, Y.X. Xiao, B.R. Chen, and Q. Jiang, Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep, hard rock tunnels, Tunnelling Underground Space Technol., 51(2016), p. 98. doi: 10.1016/j.tust.2015.10.002
      [84]
      L.Y. Li, Z.Q. Xu, H.P. Xie, Y. Ju, X. Ma, and Z.C. Han, Failure experimental study on energy laws of rock under differential dynamic impact velocities, J. China Coal Soc., 36(2011), No. 12, p. 2007.
      [85]
      B.J. Xie, D.H. Ai, and Y. Yang, Crack detection and evolution law for rock mass under SHPB impact tests, Shock Vib., 2019(2019), art. No. 3956749. doi: 10.1155/2019/3956749
      [86]
      J.Y. Xu and S. Liu, Analysis of energy dissipation rule during deformation and fracture process of rock under high temperatures in SHPB test, Chin. J. Rock Mech. Eng., 32(2013), No. S2, art. No. 3109.
      [87]
      J. Zhu, J.H. Deng, P. Wang, Z.G. Fu, R.Y.S. Pak, and W.Y. Zhao, Mechanical behavior and failure mechanism of rocks under impact loading: The coupled effects of water saturation and rate dependence, Int. J. Geomech., 23(2023), No. 11, art. No. 04023196. doi: 10.1061/IJGNAI.GMENG-8584
      [88]
      D.Y. Wu, L.Y. Yu, T. Zhang, et al., Energy dissipation characteristics of high-temperature granites after water-cooling under different impact loadings, J. Cent. South Univ., 30(2023), No. 3, p. 992. doi: 10.1007/s11771-023-5284-x
      [89]
      X.S. Zhang, L.J. Ma, Z.M. Zhu, L. Zhou, M. Wang, and T. Peng, Experimental study on the energy evolution law during crack propagation of cracked rock mass under impact loads, Theor. Appl. Fract. Mech., 122(2022), art. No. 103579. doi: 10.1016/j.tafmec.2022.103579
      [90]
      Y. Zhai, F.D. Meng, Y.B. Li, Y. Li, R.F. Zhao, and Y.S. Zhang, Research on dynamic compression failure characteristics and damage constitutive model of sandstone after freeze–thaw cycles, Eng. Fail. Anal., 140(2022), art. No. 106577. doi: 10.1016/j.engfailanal.2022.106577
      [91]
      S.G. Chen, H.M. Zhang, L. Wang, et al., Experimental study on the impact disturbance damage of weakly cemented rock based on fractal characteristics and energy dissipation regulation, Theor. Appl. Fract. Mech., 122(2022), art. No. 103665. doi: 10.1016/j.tafmec.2022.103665
      [92]
      X.B. Li, Z.L. Zhou, Z.Y. Ye, et al., Study of rock mechanical characteristics under coupled static and dynamic loads, Chin. J. Rock Mech. Eng., 27(2008), No. 7, p. 1387.
      [93]
      P. Asadi and A. Fakhimi, Bonded particle modeling of grain size effect on tensile and compressive strengths of rock under static and dynamic loading, Adv. Powder Technol., 34(2023), No. 5, art. No. 104013. doi: 10.1016/j.apt.2023.104013
      [94]
      L.Y. Liu, Z. Zhang, T. Wang, S. Zhi, and J. Wang, Evolution characteristics of fracture volume and acoustic emission entropy of monzogranite under cyclic loading, Geomech. Geophys. Geo-Energy Geo-Resour., 10(2024), No.1, art. No. 16. doi: 10.1007/s40948-024-00737-1
      [95]
      Y.H. Li, J.Y. Peng, F.P. Zhang, and Z.G. Qiu, Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading, Eng. Geol., 213(2016), p. 64. doi: 10.1016/j.enggeo.2016.08.006
      [96]
      K. Zhang, S. Zhang, J.X. Ren, M. Wang, S. Jing, and W.J. Zhang, Study on characteristics of acoustic emission b value of coal rock with outburst-proneness under coupled static and dynamic loads, Shock Vib., 2023(2023), art. No. 2400632. doi: 10.1155/2023/2400632
      [97]
      Q.G. Chen, Y.J. Zuo, J.Y. Lin, B. Chen, and L.J. Zheng, Numerical research on response characteristics of surrounding rock for deep layered clastic rock roadway under static and dynamic loading conditions, Geomech. Geophys. Geo-Energy Geo-Resour., 8(2022), No. 3, art. No. 91. doi: 10.1007/s40948-021-00329-3
      [98]
      F. Xiao, D. Jiang, F. Wu, et al., Effects of prior cyclic loading damage on failure characteristics of sandstone under true-triaxial unloading conditions, Int. J. Rock Mech. Min. Sci., 132(2020), art. No. 104379. doi: 10.1016/j.ijrmms.2020.104379
      [99]
      X.B. Li, K. Du, and D.Y. Li, True triaxial strength and failure modes of cubic rock specimens with unloading the minor principal stress, Rock Mech. Rock Eng., 48(2015), No. 6, p. 2185. doi: 10.1007/s00603-014-0701-y
      [100]
      C.L. Dong, C.T. Fan, X.Y. Lu, G.M. Zhao, M.J. Qi, and R.H. Qin, Mechanical and energy evolution characteristics of sandstone under true triaxial cyclic loading, Appl. Sci., 13(2023), No. 12, art. No. 7230. doi: 10.3390/app13127230
      [101]
      H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, Chin. J. Rock Mech. Eng., 24(2005), No. 15, p. 2603.
      [102]
      Z.M. Zheng, Y. Yang, and C. Pan, The nonlinear energy model and stress-strain model of sandstone, Sci. Rep., 13(2023), No. 1, art. No. 8456. doi: 10.1038/s41598-023-35145-0
      [103]
      T.B. Zhou, Y.P. Qin, J. Cheng, X.Y. Zhang, and Q.F. Ma, Study on damage evolution model of sandstone under triaxial loading and postpeak unloading considering nonlinear behaviors, Geofluids, 2021(2021), art. No. 2395789. doi: 10.1155/2021/2395789
      [104]
      R.D. Peng, H.P. Xie, and Y. Ju, Analysis of energy dissipation and damage evolution of sandstone during tensile process, Chin. J. Rock Mech. Eng., 26(2007), No. 12, p. 2526.
      [105]
      R.D. Peng, Y. Ju, F. Gao, H.P. Xie, and P. Wang, Energy analysis on damage of coal under cyclical triaxial loading and unloading conditions, J. China Coal Soc., 39(2014), No. 2, p. 245.
      [106]
      R.Q. Huang and D. Huang, Study on deformation characteristics and constitutive model of rock on the condition of unloading, Adv. Earth Sci., 23(2008), No. 5, p. 441.
      [107]
      J.X. Ren, X.R. Ge, Y.B. Pu, W. Ma, and Y.L. Zhu, Primary study of real-time ct testing of unloading damage evolution law of rock, Chin. J. Rock Mech. Eng., 19(2000), No. 6, p. 697.
      [108]
      M.C. He, J.L. Miao, D.J. Li, and C.G. Wang, Experimental study on rockburst processes of granite specimen at great depth, Chin. J. Rock Mech. Eng, 26(2007), No. 5, p. 865.
      [109]
      W.D. Ortlepp and T.R. Stacey, Rockburst mechanisms in tunnels and shafts, Tunnelling Underground Space Technol., 9(1994), No. 1, p. 59. doi: 10.1016/0886-7798(94)90010-8
      [110]
      T. Wang, Z.S. Liu, and L.Y. Liu, Investigating a three-dimensional convolution recognition model for acoustic emission signal analysis during uniaxial compression failure of coal, Geomatics Nat. Hazards Risk, 15(2024), No. 1, art. No. 2322483. doi: 10.1080/19475705.2024.2322483
      [111]
      Z.Q. Jia, H.P. Xie, R. Zhang, et al., Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression, Rock Mech. Rock Eng., 53(2020), No. 5, p. 2063. doi: 10.1007/s00603-019-02042-w
      [112]
      X.L. Li, S.J. Chen, E.Y. Wang, and Z.H. Li, Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response, Eng. Fail. Anal., 124(2021), art. No. 105396. doi: 10.1016/j.engfailanal.2021.105396
      [113]
      X.J. Feng, Z. Ding, Y.Q. Ju, Q.M. Zhang, and M. Ali, “Double peak” of dynamic strengths and acoustic emission responses of coal masses under dynamic loading, Nat. Resour. Res., 31(2022), No. 3, p. 1705. doi: 10.1007/s11053-022-10066-3
      [114]
      Q. Ma, X.L. Liu, Y.L. Tan, et al., Numerical study of mechanical properties and microcrack evolution of double-layer composite rock specimens with fissures under uniaxial compression, Eng. Fract. Mech., 289(2023), art. No. 109403. doi: 10.1016/j.engfracmech.2023.109403
      [115]
      J.L. Liu, S.Y. Cao, Y.X. Zou, and Z.J. Song, EBSD analysis of rock fabrics and its application, Geol. Bull. China, 27(2008), No. 10, p. 1638.
      [116]
      C.Q. Chu, S.C. Wu, C.J. Zhang, and Y.L. Zhang, Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1680. doi: 10.1007/s12613-023-2649-y
      [117]
      S.Y. Cao and J.L. Liu, Modern techniques for the analysis of rock microstructure: EBSD and its application, Adv. Earth Sci., 21(2006), No. 10, p. 1091. doi: 10.11867/j.issn.1001-8166.2006.10.1091
      [118]
      M. Alam, J.P. Parmigiani, and J.J. Kruzic, An experimental assessment of methods to predict crack deflection at an interface, Eng. Fract. Mech., 181(2017), p. 116. doi: 10.1016/j.engfracmech.2017.05.013
      [119]
      E.Y. Sun, P.F. Becher, K.P. Plucknett, et al., Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives, J. Am. Ceram. Soc., 81(1998), No. 11, p. 2831. doi: 10.1111/j.1151-2916.1998.tb02703.x
      [120]
      G.X. Jiang, Z.X. Liu, D.H. Wei, and W. Qu, X-Ray Petrofabrics, Geology Press, Beijing, 1997.
      [121]
      D.J. Prior, A.P. Boyle, F. Brenker, et al., The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, Am. Mineral., 84(1999), No. 11-12, p. 1741. doi: 10.2138/am-1999-11-1204
      [122]
      P. Yang, Electron Backscatter Diffraction Technique and Its Applications, Metallurgy Industry Press, Beijing, 2007.
      [123]
      T. Wang, W.W. Ye, Y.M. Tong, N.S. Jiang, and L.Y. Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2310. doi: 10.1007/s12613-023-2667-9
      [124]
      T.K. Tan and W.F. Kang, Locked in stresses, creep and dilatancy of rocks, and constitutive equations, Rock Mech., 13(1980), No. 1, p. 5. doi: 10.1007/BF01257895
      [125]
      B. Brady and E.T. Brown, Rock Mechanics for Underground Mining, 3rd ed., Springer Science & Business Media, Berlin, 2006.
      [126]
      Q.H. Qian and X.P. Zhou, Effects of incompatible deformation on failure mode and stress field of surrounding rock mass, Chin. J Rock. Mech. Eng., 32(2013), No. 4, p. 649.
      [127]
      S.J. Wang, Geological nature of rock and its deduction for rock mechanics, Chin. J Rock. Mech. Eng. 28(2009), No. 3, p. 433.
      [128]
      K. Sekine and K. Hayashi, Residual stress measurements on a quartz vein: A constraint on paleostress magnitude, J. Geophys. Res.: Solid Earth, 114(2009), No. B1, art. No. B01404. doi: 10.1029/2007JB005295
      [129]
      X. Zhong, H.Z. Wang, L.F. Feng, et al., The geological application of elastic geo-thermobarometry: Example of quartz-in-garnet (QuiG) barometry, Acta Petrol. Sin., 38(2022), No. 10, p. 2933. doi: 10.18654/1000-0569/2022.10.03
      [130]
      X.Y. Gao, M. Xia, S.Y. Zhou, and S.X. Wang, Principle and geological applicability of the Raman elastic geothermobarometry for mineral inclusion systems, Acta Petrol. Sin., 37(2021), No. 4, p. 974. doi: 10.18654/1000-0569/2021.04.02
      [131]
      L.R. Alejano, G. Walton, and S. Gaines, Residual strength of granitic rocks, Tunnelling Underground Space Technol., 118(2021), art. No. 104189. doi: 10.1016/j.tust.2021.104189
      [132]
      F. Li, S. You, H.G. Ji, and H. Wang, Study of damage constitutive model of brittle rocks considering stress dropping characteristics, Adv. Civ. Eng., 2020(2020), art. No. 8875029. doi: 10.1155/2020/8875029
      [133]
      P. Xiao, D.Y. Li, G.Y. Zhao, and H.X. Liu, New criterion for the spalling failure of deep rock engineering based on energy release, Int. J. Rock Mech. Min. Sci., 148(2021), art. No. 104943. doi: 10.1016/j.ijrmms.2021.104943
      [134]
      S.Q. Ye, J.N. Li, J. Xie, B.G. Yang, H.C. Hao, and F. Li, Exploration on formation mechanism of core discing based on energy analysis, Geofluids, 2022(2022), art. No. 9719509. doi: 10.1155/2022/9719509
      [135]
      F.Q. Gong, J.Y. Yan, S. Luo, and X.B. Li, Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4237. doi: 10.1007/s00603-019-01842-4
      [136]
      F.Q. Gong, J.Y. Yan, X.B. Li, and S. Luo, A peak-strength strain energy storage index for rock burst proneness of rock materials, Int. J. Rock Mech. Min. Sci., 117(2019), p. 76. doi: 10.1016/j.ijrmms.2019.03.020
      [137]
      F.Q. Gong, S. Luo, and J.Y. Yan, Energy storage and dissipation evolution process and characteristics of marble in three tension-type failure tests, Rock Mech. Rock Eng., 51(2018), No. 11, p. 3613. doi: 10.1007/s00603-018-1564-4
      [138]
      S. Luo, F.Q. Gong, L.L. Li, and K. Peng, Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressures, Trans. Nonferrous Met. Soc. China, 33(2023), No. 7, p. 2168. doi: 10.1016/S1003-6326(23)66251-X
      [139]
      J.B. Zhu, Z.Y. Liao, and C.A. Tang, Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses, Rock Mech. Rock Eng., 49(2016), No. 10, p. 3935. doi: 10.1007/s00603-016-0993-1
      [140]
      C.Y. Liang, X. Li, and S.R. Wu, Research on energy characteristics of size effect of granite under low/intermediate strain rates, Rock Soil Mech., 37(2016), No. 12, p. 3472. doi: 10.16285/j.rsm.2016.12.016
      [141]
      H.P. Xie, Y. Ju, L.Y. Li, and R.D. Peng, Energy mechanism of deformation and failure of rock masses, Chin. J. Rock Mech. Eng., 27(2008), No. 9, p. 1729.
      [142]
      C. Zhao, K. Wu, S.C. Li, and J.Q. Zhao, Energy characteristics and damage deformation of rock subjected to cyclic loading, Chin. J. Rock Mech. Eng., 35(2013), No. 5, p. 890.
      [143]
      H.P. Xie, H.W. Zhou, J.F. Liu, et al., Mining-induced mechanical behavior in coal seams under different mining layouts, J. China Coal Soc., 36(2011), No. 7, p. 1067.
      [144]
      Z.Z. Zhang and F. Gao, Confining pressure effect on rock energy, Chin. J. Rock Mech. Eng., 34(2015), No.1, p. 1.

    Catalog


    • /

      返回文章
      返回