留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(15)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1504
  • HTML全文浏览量:  203
  • PDF下载量:  28
  • 被引次数: 0
Xuanming Cai, Yang Hou, Wei Zhang, Zhiqiang Fan, Yubo Gao, Junyuan Wang, Heyang Sun, Zhujun Zhang,  and Wenshu Yang, Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 737-749. https://doi.org/10.1007/s12613-024-2865-0
Cite this article as:
Xuanming Cai, Yang Hou, Wei Zhang, Zhiqiang Fan, Yubo Gao, Junyuan Wang, Heyang Sun, Zhujun Zhang,  and Wenshu Yang, Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 737-749. https://doi.org/10.1007/s12613-024-2865-0
引用本文 PDF XML SpringerLink
研究论文

3D打印多孔金属结构在压缩载荷作用下的力学行为及响应机制


  • 通讯作者:

    蔡宣明    E-mail: caixm@nuc.edu.cn

    杨文澍    E-mail: yws001003@163.com

文章亮点

  • (1) 明确了三种不同积分数AlSi10Mg多孔结构的力学行为。
  • (2) 获得了AlSi10Mg多孔结构同时具有韧性和脆性双重力学特性损伤模式。
  • (3) 确定了沿斜截面相对错动而发生剪切破坏是导致结构损坏的最直接原因。
  • (4) 文中构建的多孔结构归一化能量吸收模式较好地诠释了多孔结构能量吸收状态。
  • 为全面认识AlSi10Mg多孔结构在压缩载荷作用下的力学行为、损伤模式及吸能机制,从而展开了一系列的实验和数值模拟研究。对标高冲击、强吸能、轻量化特性需求,设计优化了三种体积分数AlSi10Mg多孔结构。通过不同加载速率下的实验研究,获得了不同体积分数AlSi10Mg多孔结构的力学行为,包括应力–应变关系、结构承载状态、变形破坏模式及能量吸收特性。损伤断面细观结构损伤模式指出该AlSi10Mg多孔结构同时具有韧性和脆性双重力学特性。数值模拟研究表明,该AlSi10Mg多孔结构沿斜截面相对错动而发生剪切破坏,且破坏位置与轴向加载方向几乎呈45°,这一破坏模式是导致其结构损坏的最直接原因,揭示了AlSi10Mg多孔结构在压缩载荷作用下的损伤破坏机理。文中构建的多孔结构归一化能量吸收模式,较好地诠释了该AlSi10Mg多孔结构能量吸收状态,并给出了其结构敏感位置,研究结果为同行在结构设计及优化时提供了重要的参考依据。
  • Research Article

    Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading

    + Author Affiliations
    • AlSi10Mg porous protective structure often produces different damage forms under compressive loading, and these damage modes affect its protective function. In order to well meet the service requirements, there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading. In this paper, AlSi10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact, strong-energy absorption, and lightweight characteristics. The mechanical behaviors of AlSi10Mg porous structures, including the stress–strain relationship, structural bearing state, deformation and damage modes, and energy absorption characteristics, were obtained through experimental studies at different loading rates. The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties. Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section, and the damage location is almost at 45° to the load direction, which is the most direct cause of its structural damage, revealing the damage mechanism of AlSi10Mg porous structures under the compressive load. The normalized energy absorption model constructed in the paper well interprets the energy absorption state of AlSi10Mg porous structures and gives the sensitive location of the structures, and the results of this paper provide important references for peers in structural design and optimization.
    • loading
    • [1]
      P. Zamani and Z. Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1779. doi: 10.1007/s12613-023-2630-9
      [2]
      H.Y. Liu, J.L. Wu, S.Q. Wang, J. Duan, and H.P. Shao, Effect of Sr2+ on 3D gel-printed Sr3− x Mg x (PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2236. doi: 10.1007/s12613-023-2638-1
      [3]
      B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
      [4]
      Y.X. Geng, H. Tang, J.H. Xu, et al., Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1770. doi: 10.1007/s12613-021-2287-1
      [5]
      Y.F. Zhang, A. Majeed, M. Muzamil, J.X. Lv, T. Peng, and V. Patel, Investigation for macro mechanical behavior explicitly for thin-walled parts of AlSi10Mg alloy using selective laser melting technique, J. Manuf. Process., 66(2021), p. 269. doi: 10.1016/j.jmapro.2021.04.022
      [6]
      S. Mojallal, H. Mohammadzadeh, A. Aghaeinejad-Meybodi, and R. Jafari, Effect of NiO–NiCr2O4 nano-oxides on the microstructural, mechanical and corrosion properties of Ni-coated carbon steel, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1078. doi: 10.1007/s12613-022-2584-3
      [7]
      Z.Y. Wang, Z.Y. Zhao, B. Liu, P.C. Huo, and P.K. Bai, Compression properties of porous Inconel 718 alloy formed by selective laser melting, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1309. doi: 10.1007/s42114-021-00327-9
      [8]
      L.Z. Xie, Z.G. Xu, Y.Z. Qi, et al., Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 917. doi: 10.1007/s12613-022-2568-3
      [9]
      N. Tabatabaei, A. Zarei-Hanzaki, A. Moshiri, and H.R. Abedi, The effect of heat treatment on the room and high temperature mechanical properties of AlSi10Mg alloy fabricated by selective laser melting, J. Mater. Res. Technol., 23(2023), p. 6039. doi: 10.1016/j.jmrt.2023.02.086
      [10]
      Y.W. Zhang, Y.L. Lin, Y. Li, and X.C. Li, 3D printed self-similar AlSi10Mg alloy hierarchical honeycomb architectures under in-plane large deformation, Thin Walled Struct., 164(2021), art. No. 107795. doi: 10.1016/j.tws.2021.107795
      [11]
      Y. Zhou, H.P. Wang, D. Wang, et al., Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 474. doi: 10.1007/s12613-022-2499-z
      [12]
      X.N. Zhang, X.Y. Xie, Y.J. Li, B. Li, S.L. Yan, and P. Wen, Mechanical behavior of Al–Si10–Mg P-TPMS structure fabricated by selective laser melting and a unified mathematical model with geometrical parameter, Materials, 16(2023), No. 2, art. No. 468. doi: 10.3390/ma16020468
      [13]
      A. Baroutaji, A. Arjunan, J. Beal, J. Robinson, and J. Coroado, The influence of atmospheric oxygen content on the mechanical properties of selectively laser melted AlSi10Mg TPMS-based lattice, Materials, 16(2023), No. 1, art. No. 430. doi: 10.3390/ma16010430
      [14]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [15]
      H.A. AlQaydi, K. Krishnan, J. Oyebanji, et al., Hybridisation of AlSi10Mg lattice structures for engineered mechanical performance, Addit. Manuf., 57(2022), art. No. 102935. doi: 10.1016/j.addma.2022.102935
      [16]
      Y.S. Liu, E.H. Wang, L.C. Xu, et al., Synthesis of CA6/AlON composite with enhanced slag resistance, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 756. doi: 10.1007/s12613-022-2435-2
      [17]
      N. Limbasiya, A. Jain, H. Soni, V. Wankhede, G. Krolczyk, and P. Sahlot, A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg, J. Mater. Res. Technol., 21(2022), p. 1141. doi: 10.1016/j.jmrt.2022.09.092
      [18]
      J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
      [19]
      Y.N. Li, J. Zhan, C.H. Song, et al., Design and performance of a novel neutron shielding composite materials based on AlSi10Mg porous structure fabricated by laser powder bed fusion, J. Alloys Compd., 968(2023), art. No. 172180. doi: 10.1016/j.jallcom.2023.172180
      [20]
      X.J. Fan, Q. Tang, Q.X. Feng, et al., Design, mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting, Int. J. Mech. Sci., 204(2021), art. No. 106586. doi: 10.1016/j.ijmecsci.2021.106586
      [21]
      W.T. Chen, W.B. Yu, P.C. Zhang, et al., Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlN x MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1406. doi: 10.1007/s12613-022-2427-2
      [22]
      H.R. Gao, X. Jin, J.Z. Yang, et al., Porous structure and compressive failure mechanism of additively manufactured cubic-lattice tantalum scaffolds, Mater. Today Adv., 12(2021), art. No. 100183. doi: 10.1016/j.mtadv.2021.100183
      [23]
      D.Y. Zhang, D.H. Yi, X.P. Wu, et al., SiC reinforced AlSi10Mg composites fabricated by selective laser melting, J. Alloys Compd., 894(2022), art. No. 162365. doi: 10.1016/j.jallcom.2021.162365
      [24]
      Y.W. Luo, M.Y. Wang, J.G. Tu, Y. Jiang, and S.Q. Jiao, Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1844. doi: 10.1007/s12613-020-2212-z
      [25]
      M. Aktürk, M. Boy, M.K. Gupta, S. Waqar, G.M. Krolczyk, and M.E. Korkmaz, Numerical and experimental investigations of built orientation dependent Johnson–Cook model for selective laser melting manufactured AlSi10Mg, J. Mater. Res. Technol., 15(2021), p. 6244. doi: 10.1016/j.jmrt.2021.11.062
      [26]
      T. Han, D.D. Qi, J. Ma, and C.Y. Sun, Generative design and mechanical properties of the lattice structures for tensile and compressive loading conditions fabricated by selective laser melting, Mech. Mater., 188(2024), art. No. 104840. doi: 10.1016/j.mechmat.2023.104840
      [27]
      T.Y. Yu, J.Y. Liu, Y. He, J.C. Tian, M.J. Chen, and Y. Wang, Microstructure and wear characterization of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites manufactured using selective laser melting, Wear, 476(2021), art. No. 203581. doi: 10.1016/j.wear.2020.203581
      [28]
      X. Li, L.J. Xiao, and W.D. Song, Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading, Addit. Manuf., 46(2021), art. No. 102054.
      [29]
      J. Bi, L.K. Wu, Z.Q. Liu, et al., Formability, surface quality and compressive fracture behavior of AlMgScZr alloy lattice structure fabricated by selective laser melting, J. Mater. Res. Technol., 19(2022), p. 391. doi: 10.1016/j.jmrt.2022.05.051
      [30]
      K.P. Logakannan, D. Ruan, J. Rengaswamy, S. Kumar, and V. Ramachandran, Fracture locus of additively manufactured AlSi10Mg alloy, Thin Walled Struct., 184(2023), art. No. 110460. doi: 10.1016/j.tws.2022.110460
      [31]
      K. Ishfaq, M. Abdullah, and M.A. Mahmood, A state-of-the-art direct metal laser sintering of Ti6Al4V and AlSi10Mg alloys: Surface roughness, tensile strength, fatigue strength and microstructure, Opt. Laser Technol., 143(2021), art. No. 107366. doi: 10.1016/j.optlastec.2021.107366
      [32]
      A. Ben, G. Yuval, S. Alon, S. Shmuel, and S. Oren, Study on the effects of manufacturing parameters on the dynamic properties of AlSi10Mg under dynamic loads using Taguchi procedure, Mater. Des., 223(2022), art. No. 111125. doi: 10.1016/j.matdes.2022.111125
      [33]
      M.E. Korkmaz, M.K. Gupta, G. Robak, K. Moj, G.M. Krolczyk, and M. Kuntoğlu, Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges, J. Manuf. Process., 81(2022), p. 1040. doi: 10.1016/j.jmapro.2022.07.051
      [34]
      D.C. Kong, C.F. Dong, X.Q. Ni, et al., Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 266. doi: 10.1007/s12613-020-2147-4
      [35]
      J.T. Zhou, X. Zhou, H. Li, J.W. Hu, X. Han, and S. Liu, In-situ laser shock peening for improved surface quality and mechanical properties of laser-directed energy-deposited AlSi10Mg alloy, Addit. Manuf., 60(2022), art. No. 103177. doi: 10.1016/j.addma.2022.103177
      [36]
      X. Wang, R.X. Qin, and B.Z. Chen, Mechanical properties and energy absorption capability of a topology-optimized lattice structure manufactured via selective laser melting under axial and offset loading, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 236(2022), No. 19, p. 10221. doi: 10.1177/09544062221100614
      [37]
      Y.W. Zhang, T. Liu, H. Ren, I. Maskery, and I. Ashcroft, Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures, Compos. Struct., 195(2018), p. 45. doi: 10.1016/j.compstruct.2018.04.021
      [38]
      B. Amir, E. Kochavi, S. Gruntman, Y. Gale, S. Samuha, and O. Sadot, Experimental investigation on shear strength of laser powder bed fusion AlSi10Mg under quasi-static and dynamic loads, Addit. Manuf., 46(2021), art. No. 102150. doi: 10.1016/j.addma.2021.102150
      [39]
      M.G. Zhang, H. Mei, P. Chang, and L.F. Cheng, 3D printing of structured electrodes for rechargeable batteries, J. Mater. Chem. A, 8(2020), No. 21, p. 10670. doi: 10.1039/D0TA02099K
      [40]
      V.A. Lvov, F.S. Senatov, A.M. Korsunsky, and A.I. Salimon, Design and mechanical properties of 3D-printed auxetic honeycomb structure, Mater. Today Commun., 24(2020), art. No. 101173. doi: 10.1016/j.mtcomm.2020.101173
      [41]
      Z. Feng, X.M. Wang, H. Tan, et al., Effect of heat treatment patterns on porosity, microstructure, and mechanical properties of selective laser melted TiB2/Al–Si–Mg composite, Mater. Sci. Eng. A, 855(2022), art. No. 143932. doi: 10.1016/j.msea.2022.143932
      [42]
      K. Matus, G. Matula, M. Pawlyta, J. Krzysteczko-Witek, and B. Tomiczek, TEM study of the microstructure of an alumina/Al composite prepared by gas-pressure infiltration, Materials, 15(2022), No. 17, art. No. 6112. doi: 10.3390/ma15176112
      [43]
      C.R. Chen, J.F. Ma, Y.M. Liu, G.F. Lian, X.X. Chen, and X. Huang, Compressive behavior and property prediction of gradient cellular structures fabricated by selective laser melting, Mater. Today Commun., 35(2023), art. No. 105853. doi: 10.1016/j.mtcomm.2023.105853
      [44]
      C.C. Roth, T. Tancogne-Dejean, and D. Mohr, Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling, Addit. Manuf., 43(2021), art. No. 101998. doi: 10.1016/j.addma.2021.101998
      [45]
      M. Araghi, H. Rokhgireh, and A. Nayebi, Experimental and FEM investigation of BCC lattice structure under compression test by using continuum damage mechanics with micro-defect closure effect, Mater. Des., 232(2023), art. No. 112125. doi: 10.1016/j.matdes.2023.112125
      [46]
      S.K. Sharma, H.S. Grewal, K.K. Saxena, et al., Advancements in the additive manufacturing of magnesium and aluminum alloys through laser-based approach, Materials, 15(2022), No. 22, art. No. 8122. doi: 10.3390/ma15228122
      [47]
      F. Concli, R. Gerosa, D. Panzeri, and L. Fraccaroli, High and low cycle fatigue properties of selective laser melted AISI 316L and AlSi10Mg, Int. J. Fatigue, 177(2023), art. No. 107931. doi: 10.1016/j.ijfatigue.2023.107931
      [48]
      P. Ashwath, M.A. Xavior, A. Batako, P. Jeyapandiarajan, and J. Joel, Selective laser melting of Al–Si–10Mg alloy: Microstructural studies and mechanical properties assessment, J. Mater. Res. Technol., 17(2022), p. 2249. doi: 10.1016/j.jmrt.2022.01.135
      [49]
      Y. Zhao, J. Bi, and X.P. Zhou, Quantitative analysis of rockburst in the surrounding rock masses around deep tunnels, Eng. Geol., 273(2020), art. No. 105669. doi: 10.1016/j.enggeo.2020.105669
      [50]
      K. Miao, H. Zhou, Y.P. Gao, X. Deng, Z.L. Lu, and D.C. Li, Laser Powder-bed-fusion of Si3N4 reinforced AlSi10Mg composites: Processing, mechanical properties and strengthening mechanisms, Mater. Sci. Eng. A, 825(2021), art. No. 141874. doi: 10.1016/j.msea.2021.141874
      [51]
      T. Maconachie, M. Leary, P. Tran, et al., The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures, Int. J. Adv. Manuf. Technol., 118(2022), No. 11, p. 4085. doi: 10.1007/s00170-021-08203-y
      [52]
      W.J. Zhang, Y.Y. Hu, X.F. Ma, et al., Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling, Int. J. Fatigue, 145(2021), art. No. 106109. doi: 10.1016/j.ijfatigue.2020.106109
      [53]
      G.Q. Wang, X. Chen, and C.L. Qiu, On the macro- and micro-deformation mechanisms of selectively laser melted damage tolerant metallic lattice structures, J. Alloys Compd., 852(2021), art. No. 156985. doi: 10.1016/j.jallcom.2020.156985
      [54]
      I. Maskery, A. Hussey, A. Panesar, et al., An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast., 53(2017), No. 2, p. 151. doi: 10.1177/0021955X16639035
      [55]
      C.G. Li, S. Sun, C.M. Liu, Q.H. Lu, P. Ma, and Y. Wang, Microstructure and mechanical properties of TiC/AlSi10Mg alloy fabricated by laser additive manufacturing under high-frequency micro-vibration, J. Alloys Compd., 794(2019), p. 236. doi: 10.1016/j.jallcom.2019.04.287
      [56]
      H. Ramos, R. Santiago, S. Soe, P. Theobald, and M. Alves, Response of gyroid lattice structures to impact loads, Int. J. Impact Eng., 164(2022), art. No. 104202. doi: 10.1016/j.ijimpeng.2022.104202
      [57]
      E.M. Sefene, State-of-the-art of selective laser melting process: A comprehensive review, J. Manuf. Syst., 63(2022), p. 250. doi: 10.1016/j.jmsy.2022.04.002

    Catalog


    • /

      返回文章
      返回