留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(14)

数据统计

分享

计量
  • 文章访问数:  255
  • HTML全文浏览量:  114
  • PDF下载量:  14
  • 被引次数: 0
Qi Zhang, Guanghui Chen, Yuemeng Zhu, Zhengliang Xue,  and Guang Xu, Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2670-2680. https://doi.org/10.1007/s12613-024-2867-y
Cite this article as:
Qi Zhang, Guanghui Chen, Yuemeng Zhu, Zhengliang Xue,  and Guang Xu, Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2670-2680. https://doi.org/10.1007/s12613-024-2867-y
引用本文 PDF XML SpringerLink
研究论文

加热温度和气氛对高Mn高Al奥氏体低密度钢元素分布和显微组织的影响


  • 通讯作者:

    陈光辉    E-mail: chenguanghui@wust.edu.cn

文章亮点

  • (1) 发现了高Mn高Al低密度钢在热处理过程中不仅发生脱锰和脱碳,Al含量也略有损失
  • (2) 提出了低密度钢热处理后不仅发生表面相变,还在外层产生化合物层
  • (3) 氮气通常用作保护气体以防止普碳钢氧化,但会在高Al钢表面形成一层AlN化合物
  • 本文研究了高Mn高Al 奥氏体低密度钢在 900~1200°C 温度下在空气、氮气和 氮气+二氧化碳混合气氛中等温保温后表面附近的元素分布和显微组织。在空气中在900°C和1000°C温度下等温保温期间,实验钢表面附近未产生铁素体, 而在1100~1200°C温度下保温,钢的表面附近形成铁素体。由于在等温1200°C更多的C 和 Mn从钢中渗出并扩散到表面,因此铁素体比例最高,C和Mn等元素扩散到表面与N和O反应产生氧化产物形成表面化合物层。温度越高,元素的扩散速率越大,因此表面化合物层的厚度越大。此外,在氮气中1100°C 等温保温后,表面附近的Al含量略有下降,而C和Mn含量没有变化,因此在表面附近没有形成铁素体。然而,在混合气氛中1100°C等温保温后,近表面的C和 Al元素含量下降,这导致少量的铁素体形成。在相同温度下等温保温,氮气气氛下的表面化合物层厚度最大,其次是混合气氛,空气中最薄。空气气氛下的元素损失和铁素体比例最大。氮气和混合气氛中元素损失和铁素体比例均较低,但氮气气氛中的化合物厚度大。综合考量以上结果,氮气和二氧化碳混合气氛是工业生产中高Mn高Al奥氏体低密度钢的理想加热气氛。
  • Research Article

    Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel

    + Author Affiliations
    • The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900–1200°C in different atmospheres, including air, N2, and N2 + CO2. No ferrite was formed near the surface of the experimental steel during isothermal holding at 900 and 1000°C in air, while ferrite was formed near the steel surface at holding temperatures of 1100 and 1200°C. The ferrite fraction was larger at 1200°C because more C and Mn diffused to the surface, exuded from the steel, and then reacted with N and O to form oxidation products. The thickness of the compound scale increased owing to the higher diffusion rate at higher temperatures. In addition, after isothermal holding at 1100°C in N2, the Al content near the surface slightly decreased, while the C and Mn contents did not change. Therefore, no ferrite was formed near the surface. However, the near-surface C and Al contents decreased after holding at 1100°C in the N2 + CO2 mixed atmosphere, resulting in the formation of a small amount of ferrite. The compound scale was thickest in N2, followed by the N2 + CO2 mixed atmosphere, and thinnest in air. Overall, the element loss and ferrite fraction were largest after holding in air at the same temperature. The differences in element loss and ferrite fraction between in N2 and N2 + CO2 atmospheres were small, but the compound scale formed in N2 was significantly thicker. According to these results, N2 + CO2 is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel.
    • loading
    • [1]
      S.F. Hu, Z.B. Zheng, W.P. Yang, and H.K. Yang, Fe–Mn–C–Al low-density steel for structural materials: A review of alloying, heat treatment, microstructure, and mechanical properties, Steel Res. Int., 93(2022), No. 9, art. No. 2200191. doi: 10.1002/srin.202200191
      [2]
      H. Ding, D.G. Liu, M.H. Cai, and Y. Zhang, Austenite-based Fe–Mn–Al–C lightweight steels: Research and prospective, Metals, 12(2022), No. 10, art. No. 1572. doi: 10.3390/met12101572
      [3]
      C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
      [4]
      X. Lu, W.J. Tian, H. Li, X.J. Li, K. Quan, and H. Bai, Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 388. doi: 10.1007/s12613-022-2475-7
      [5]
      I. Gutierrez-Urrutia, Low density Fe–Mn–Al–C steels: Phase structures, mechanisms and properties, ISIJ Int., 61(2021), No. 1, p. 16. doi: 10.2355/isijinternational.ISIJINT-2020-467
      [6]
      S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
      [7]
      H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
      [8]
      N.I. Ramos-Fabián, I. Mejía, M. García-Domínguez, and A. Bedolla-Jacuinde, Metallographic, structural and mechanical characterization of a low-density austenitic Fe–Mn–Al–C steel microalloyed with Nb in hot-rolling condition, MRS Adv., 8(2023), No. 22, p. 1291. doi: 10.1557/s43580-023-00710-2
      [9]
      Y.X. Liu, M.X. Liu, J.L. Zhang, et al., Microstructure and mechanical properties of a Fe–28Mn–9Al–1.2C–(0, 3, 6, 9)Cr austenitic low-density steel, Mater. Sci. Eng. A, 821(2021), art. No. 141583. doi: 10.1016/j.msea.2021.141583
      [10]
      K.T. Park, S.W. Hwang, C.Y. Son, and J.K. Lee, Effects of heat treatment on microstructure and tensile properties of a Fe–27Mn–12Al–0.8C low-density steel, JOM, 66(2014), No. 9, p. 1828. doi: 10.1007/s11837-014-1064-2
      [11]
      S. Li, Z.N. Yang, H.S. Zurob, H. Chen, C. Zhang, and Z.G. Yang, On the decarburization of surface pearlite, Metall. Mater. Trans. A, 52(2021), No. 8, p. 3198. doi: 10.1007/s11661-021-06328-z
      [12]
      R.K. Wild, Vacuum annealing of stainless steel at temperatures between 770 and 1470K, Corros. Sci., 14(1974), No. 10, p. 575. doi: 10.1016/S0010-938X(74)80021-1
      [13]
      Q. Zhang, G.H. Chen, Y.P. Shen, Z.L. Xue, and G. Xu, Microstructure evolution on the surface of Fe–20Mn–6Al–0.6C–0.15Si austenitic low-density steel during heat treatment, J. Mater. Eng. Perform., (2023). DOI: 10.1007/s11665-023-08803-7
      [14]
      M.X. Zhou, H.X. Wang, M. Zhu, et al., New insights to the metallurgical mechanism of niobium in high-carbon pearlitic steels, J. Mater. Res. Technol., 26(2023), p. 1609. doi: 10.1016/j.jmrt.2023.07.235
      [15]
      H.D. Alvarenga, T. van de Putte, N. van Steenberge, J. Sietsma, and H. Terryn, Influence of carbide morphology and microstructure on the kinetics of superficial decarburization of C–Mn steels, Metall. Mater. Trans. A, 46(2015), No. 1, p. 123. doi: 10.1007/s11661-014-2600-y
      [16]
      Y. Guo, F.Q. Dai, S.T. Hu, and G. Xu, Effect of surface oxidation on decarburization of a Fe–3%Si steel during annealing, ISIJ Int., 58(2018), No. 9, p. 1727. doi: 10.2355/isijinternational.ISIJINT-2018-233
      [17]
      M. Hajduga and J. Kučera, Decarburization of Fe–Cr–C steels during high-temperature oxidation, Oxid. Met., 29(1988), No. 5, p. 419.
      [18]
      X.N. Duan, H. Yu, J. Lu, and Z. Huang, Temperature dependence and formation mechanism of surface decarburization behavior in 35CrMo steel, Steel Res. Int., 90(2019), No. 9, art. No. 1900188. doi: 10.1002/srin.201900188
      [19]
      M.J. Gildersleeve, Relationship between decarburisation and fatigue strength of through hardened and carburising steels, Mater. Sci. Technol., 7(1991), No. 4, p. 307. doi: 10.1179/mst.1991.7.4.307
      [20]
      R.I. Carroll and J.H. Beynon, Decarburisation and rolling contact fatigue of a rail steel, Wear, 260(2006), No. 4-5, p. 523. doi: 10.1016/j.wear.2005.03.005
      [21]
      A. Rafiei, G.A. Irons, and K.S. Coley, Argon-oxygen decarburization of high manganese steels: Effect of temperature, alloy composition, and submergence depth, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2509. doi: 10.1007/s11663-021-02196-5
      [22]
      Y.R. Chen, X.X. Xu, and Y. Liu, Decarburization of 60Si2MnA in atmospheres containing different levels of oxygen, water vapour and carbon dioxide at 700–1000°C, Oxid. Met., 93(2020), No. 1, p. 105. doi: 10.1007/s11085-019-09949-3
      [23]
      Y.B. Liu, W. Zhang, Q. Tong, and Q.S. Sun, Effects of Si and Cr on complete decarburization behavior of high carbon steels in atmosphere of 2 vol.% O2, J. Iron Steel Res. Int., 23(2016), No. 12, p. 1316. doi: 10.1016/S1006-706X(16)30194-7
      [24]
      M. Nomura, H. Morimoto, and M. Toyama, Calculation of ferrite decarburizing depth, considering chemical composition of steel and heating condition, ISIJ Int., 40(2000), No. 6, p. 619. doi: 10.2355/isijinternational.40.619
      [25]
      J.H. Chu and Y.P. Bao, Mn evaporation and denitrification behaviors of molten Mn steel in the vacuum refining with slag process, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1288. doi: 10.1007/s12613-021-2311-5
      [26]
      J.H. Chu and Y.P. Bao, Volatilization behavior of manganese from molten steel with different alloying methods in vacuum, Metals, 10(2020), No. 10, art. No. 1348. doi: 10.3390/met10101348
      [27]
      F.J. Lan, C.L. Zhuang, C.R. Li, J.B. Chen, G.K. Yang, and H.J. Yao, Study on manganese volatilization behavior of Fe–Mn–C–Al twinning-induced plasticity steel, High Temp. Mater. Process., 40(2021), No. 1, p. 461. doi: 10.1515/htmp-2021-0049
      [28]
      A.F. Smitll and R. Hales, Diffusion of manganese in type 316 austenitic stainless steel, Met. Sci., 9(1975), No. 1, p. 181. doi: 10.1179/030634575790444432
      [29]
      S.D. Catteau, T. Sourmail, and A. Moine, Dilatometric study of phase transformations in steels: Some issues, Mater. Perform. Charact., 5(2016), No. 5, p. 564.
      [30]
      S. Kumar and G.S. Mahobia, Cyclic oxidation of Fe–18Cr–21Mn–0.65N austenitic stainless steel at 400–700°C, Trans. Indian Inst. Met., 73(2020), No. 10, p. 2457. doi: 10.1007/s12666-020-02050-3
      [31]
      Y. Guo, J.H. Zhao, B. Xu, C. Gu, K.Q. Feng, and Y.J. Wang, Effect of high-temperature oxidation on the subsurface microstructure and magnetic property of medium manganese austenitic steel, J. Alloys Compd., 913(2022), art. No. 165254. doi: 10.1016/j.jallcom.2022.165254
      [32]
      V. de Freitas Cunha Lins, M.A. Freitas, and E.M. de Paula E Silva, Oxidation kinetics of an Fe–31.8Mn–6.09Al–1.60Si–0.40C alloy at temperatures from 600 to 900°C, Corros. Sci., 46(2004), No. 8, p. 1895. doi: 10.1016/j.corsci.2003.10.015
      [33]
      A.M. de Sousa Malafaia, L. Latu-Romain, and Y. Wouters, High temperature oxidation resistance improvement in an FeMnSiCrNi alloy by Mn-depletion under vacuum annealing, Mater. Lett., 241(2019), p. 164. doi: 10.1016/j.matlet.2019.01.074
      [34]
      G.H. Chen, R. Rahimi, G. Xu, H. Biermann, and J. Mola, Impact of Al addition on deformation behavior of Fe–Cr–Ni–Mn–C austenitic stainless steel, Mater. Sci. Eng. A, 797(2020), art. No. 140084. doi: 10.1016/j.msea.2020.140084
      [35]
      G.H. Chen, G. Xu, H. Biermann, and J. Mola, Microstructure and mechanical properties of Co-added and Al-added austenitic stainless steels, Mater. Sci. Eng. A, 854(2022), art. No. 143832. doi: 10.1016/j.msea.2022.143832
      [36]
      P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
      [37]
      A.J. Maldonado, K.P. Misra, and R.D.K. Misra, Grain boundary segregation in a high entropy alloy, Mater. Technol., 38(2023), No. 1, art. No. 2221959. doi: 10.1080/10667857.2023.2221959
      [38]
      Z.Y. Huang, Y.S. Jiang, A.L. Hou, et al., Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1531. doi: 10.1016/j.jmst.2017.09.012
      [39]
      J.G. Duh and C.J. Wang, Formation and growth morphology of oxidation-induced ferrite layer in Fe–Mn–Al–Cr–C alloys, J. Mater. Sci., 25(1990), No. 4, p. 2063. doi: 10.1007/BF01045765
      [40]
      Y.L. Yang, C.H. Yang, S.N. Lin, C.H. Chen, and W.T. Tsai, Effects of Si and its content on the scale formation on hot-rolled steel strips, Mater. Chem. Phys., 112(2008), No. 2, p. 566. doi: 10.1016/j.matchemphys.2008.06.021
      [41]
      S.H. Park, I.S. Chung, and T.W. Kim, Characterization of the high-temperature oxidation behavior in Fe–25Mn–1.5Al–0.5C alloy, Oxid. Met., 49(1998), No. 3, p. 349.
      [42]
      P.R.S. Jackson and G.R. Wallwork, High temperature oxidation of iron–manganese–aluminum based alloys, Oxid. Met., 21(1984), No. 3, p. 135.
      [43]
      W.S. Yang and C.M. Wan, High temperature studies of Fe–Mn–Al–C alloys with different manganese concentrations in air and nitrogen, J. Mater. Sci., 24(1989), No. 10, p. 3497. doi: 10.1007/BF02385731
      [44]
      J.L. Sun, B.Y. Huang, J.Q. He, E.C. Meng, and Q.H. Chang, Achieving oxidation protection effect for strips hot rolling via Al2O3 nanofluid lubrication, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 908. doi: 10.1007/s12613-022-2493-5

    Catalog


    • /

      返回文章
      返回