留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(9)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  406
  • HTML全文浏览量:  190
  • PDF下载量:  18
  • 被引次数: 0
Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng,  and Runsheng Xu, Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2873-0
Cite this article as:
Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng,  and Runsheng Xu, Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2873-0
引用本文 PDF XML SpringerLink
研究论文

铁矿石对铁焦气化的促进作用:结构演化、影响机理及动力学分析


  • 通讯作者:

    陈绪亨    E-mail: chenxuheng0627@163.com

    徐润生    E-mail: xurunsheng@ustb.edu.cn

文章亮点

  • (1) 系统研究了铁矿石含量对铁焦微观结构的影响规律。
  • (2) 揭示了气化反应过程中铁焦结构对动力学行为的作用机制。
  • (3) 确定了不同铁矿石添加量下铁焦的关键动力学模型及参数。
  • 高反应性铁焦的使用为低碳炼铁提供了一条绿色途径。为了揭示铁矿石对铁焦气化行为和动力学的影响机理,本文探究了铁矿石对铁焦微观结构的影响机制,还通过非等温热重法对铁焦和焦炭的气化反应进行了对比研究。研究结果表明,与焦炭相比,铁焦的微孔和比表面积较大,且微孔会进一步扩展并相互连接,这为气化剂二氧化碳分子提供了更多的吸附位点,从而降低了铁焦的气化起始温度。结合SEM、XRD和拉曼研究发现从铁矿石中还原出来的金属铁嵌入炭基质中,降低了铁焦碳结构的有序性和石墨化程度,这是铁焦碳原子气化反应活性提高的主要原因。同时,在非等温气化过程中加快升温速度可提高铁焦的气化反应活性。动力学研究表明,由于铁焦具有丰富的孔隙结构,随机孔模型可以有效地表示铁焦的气化过程。并且随着铁矿石含量的增加,气化活化能从焦炭的 246.2 kJ/mol 逐步降低至含15wt%铁矿石铁焦的192.5 kJ/mol。本研究为铁焦气化反应行为及动力学提供了深入机制理解,对于合理设计高反应性铁焦具有重要的基础和技术意义。
  • Research Article

    Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis

    + Author Affiliations
    • The utilization of iron coke provides a green pathway for low-carbon ironmaking. To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification, the effect of iron ore on the microstructure of iron coke was investigated. Furthermore, a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method. The findings indicate that compared to coke, iron coke exhibits an augmentation in micropores and specific surface area, and the micropores further extend and interconnect. This provides more adsorption sites for CO2 molecules during the gasification process, resulting in a reduction in the initial gasification temperature of iron coke. Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke. The metallic iron reduced from iron ore is embedded in the carbon matrix, reducing the orderliness of the carbon structure, which is primarily responsible for the heightened reactivity of the carbon atoms. The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure. Moreover, as the proportion of iron ore increases, the activation energy for the carbon gasification gradually decreases, from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
    • loading
    • [1]
      J.Y. Yu, R.S. Xu, J.L. Zhang, and A.Y. Zheng, A review on reduction technology of air pollutant in current China’s iron and steel industry, J. Clean. Prod., 414(2023), art. No. 137659. doi: 10.1016/j.jclepro.2023.137659
      [2]
      C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
      [3]
      J.L. Zhang, H.Y. Fu, Y.X. Liu, et al., Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1133. doi: 10.1007/s12613-022-2501-9
      [4]
      C. Wu, Y. Zhuo, X. Xu, et al., An integrated experimental and numerical study of iron-coke briquettes’ pyrolysis and reduction behaviour in an industrial-scale pyrolyser, Powder Technol., 409(2022), art. No. 117822. doi: 10.1016/j.powtec.2022.117822
      [5]
      Z.Y. Wang, D. Han, Z.G. Liu, et al., Gas release characteristics during carbonization of iron coke hot briquette and influence of heating rate, J. Iron Steel Res. Int., 30(2023), No. 11, p. 2163. doi: 10.1007/s42243-023-01046-9
      [6]
      J. Wang, W. Wang, J.F. Bao, X.F. Chen, L.F. Duan and R.S. Xu, Performance optimization and efficient application of highly reactive iron coke: Research progress and future trend, Steel Res. Int., 94(2023), No. 9, art. No. 2300092. doi: 10.1002/srin.202300092
      [7]
      F.R. Chen, W. Lv, G.W. Zhou, Z.L. Liu, M.S. Chu, and X.W. Lv, Effects of H2, CO, and a gas mixture on the reduction process of raw and pre-oxidized ilmenite concentrate powders, Int. J. Hydrogen Energy, 55(2024), p. 502. doi: 10.1016/j.ijhydene.2023.11.217
      [8]
      J. Wang, W. Wang, X.H. Chen, et al., Investigation on the evolution of structure and strength of iron coke during carbonization: Carbon structure, pore structure, and carbonization mechanism, Powder Technol., 431(2024), art. No. 119059. doi: 10.1016/j.powtec.2023.119059
      [9]
      S. Nomura, K. Higuchi, K. Kunitomo, and M. Naito, Reaction behavior of Formed Iron Coke and Its Effect on Decreasing Thermal Reserve Zone Temperature in Blast Furnace, ISIJ Int., 50(2010), No. 10, p. 1388. doi: 10.2355/isijinternational.50.1388
      [10]
      S.Z. Shi, S. Lu, X.G. Bi, P. Li, and Q. Zheng, Decreasing of reaction beginning temperature of iron coke and its mechanism, Iron Steel, 50(2015), No. 7, p. 15.
      [11]
      S.X. Qiu, S.F. Zhang, Q.Y. Zhang, G.B. Qiu, and L.Y. Wen, Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes, J. Iron Steel Res. Int., 24(2017), No. 12, p. 1169. doi: 10.1016/S1006-706X(18)30014-1
      [12]
      J.W. Bao, M.S. Chu, Z.G. Liu, et al., Research progress on preparation and application of iron coke in blast furnace, Iron Steel, 55(2020), No. 8, p. 38. doi: 10.13228/j.boyuan.issn0449-749x.20200187
      [13]
      J.W. Bao, M.S. Chu, Z.G. Liu, et al., Effect of carbonization process parameters on metallurgical properties of iron coke, J. Iron Steel Res., 32(2020), No. 7, p. 532. doi: 10.13228/j.boyuan.issn1001-0963.20200059
      [14]
      H.T. Wang, M.S. Chu, B.Y. Guo, et al., , Investigation on gasification reaction behavior and kinetic analysis of iron coke hot briquette under isothermal conditions, Steel Res. Int., 90(2019), No. 2, art. No. 1800354. doi: 10.1002/srin.201800354
      [15]
      H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long, Experimental study on impact of iron coke hot briquette as an alternative fuel on isothermal reduction of pellets under simulated blast furnace conditions, Fuel, 268(2020), art. No. 117339. doi: 10.1016/j.fuel.2020.117339
      [16]
      K. Zhu, Z.M. Chen, S.X. Ye, S.H. Geng, Y.W. Zhang, and X.G. Lu, Gasification of iron coke and cogasification behavior of iron coke and coke under simulated hydrogen-rich blast furnace condition, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1839. doi: 10.1007/s12613-022-2429-0
      [17]
      Z.J. Liu, M.H. Cao, J.L. Zhang, et al., Synergistic reaction behavior of pyrolysis and reduction of briquette prepared by weakly caking coal and metallurgical dust, J. Iron Steel Res. Int., 30(2023), No. 7, p. 1367. doi: 10.1007/s42243-023-00992-8
      [18]
      Z.G. Liu, L.G. Cao, M.S. Chu, et al., A new type of composite coke prepared from steel slag and mixed coal: Preparation process and microstructure, Steel Res. Int., 92(2021), No. 7, art. No. 2000697. doi: 10.1002/srin.202000697
      [19]
      R.S. Xu, S.L. Deng, H. Zheng, W. Wang, M.M. Song, W. Xu, and F.F. Wang, Influence of initial iron ore particle size on CO2 gasification behavior and strength of ferro-coke, J. Iron Steel Res. Int., 27(2020), No. 8, p. 875. doi: 10.1007/s42243-020-00454-5
      [20]
      R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang, Investigation on the microstructure, thermal strength and gasification mechanism of modified ferro-coke with coal tar pitch, Metall. Mater. Trans. B, 51(2020), No. 4, p. 1526. doi: 10.1007/s11663-020-01867-z
      [21]
      R.S. Xu, S.L. Deng, H. Zheng, et al., Gasification behaviors of ferrocoke with and without water vapor, Steel Res. Int., 93(2022), No. 11, art. No. 2200575. doi: 10.1002/srin.202200575
      [22]
      J. Wang, L. Qie, Y. Hu, H. Liu, and G. Zheng, Influence of zinc on nonisothermal gasification kinetics of coke in a blast furnace, ACS Omega, 6(2021), No. 43, p. 28838. doi: 10.1021/acsomega.1c03726
      [23]
      R.S. Xu, J.L. Zhang, G.W. Wang, et al., Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 773. doi: 10.1007/s10973-015-4972-7
      [24]
      S.K. Bhatia and D.D. Perlmutter, A random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AlChE J., 26(1980), No. 3, p. 379. doi: 10.1002/aic.690260308
      [25]
      J. Bai, W. Li, C.Z. Li, Z.Q. Bai, and B.Q. Li, Influences of mineral matter on high temperature gasification of coal char, J. Fuel Chem. Technol., 37(2009), No. 2, p. 134. doi: 10.1016/S1872-5813(09)60014-1
      [26]
      J. Szekely and J.W. Evans, A structural model for gas–solid reactions with a moving boundary, Chem. Eng. Sci., 25(1970), No. 6, p. 1091. doi: 10.1016/0009-2509(70)85053-9
      [27]
      J. Fermoso, M.V. Gil, C. Pevida, J.J. Pis, and F. Rubiera, Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars, Chem. Eng. J., 161(2010), No. 1-2, p. 276. doi: https://doi.org/10.1016/j.cej.2010.04.055
      [28]
      S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
      [29]
      Z.M. Wang, K.L. Pang, K.J. Li, et al., Positive catalytic effect and mechanism of iron on the gasification reactivity of coke using thermogravimetry and density functional theory, ISIJ Int., 61(2021), No. 3, p. 773. doi: 10.2355/isijinternational.ISIJINT-2020-348
      [30]
      K.J. Li, J.L. Zhang, Z.J. Liu, X.J. Ning, and T.Q. Wang, Gasification of graphite and coke in carbon–carbon dioxide–sodium or potassium carbonate systems, Ind. Eng. Chem. Res., 53(2014), No. 14, p. 5737. doi: 10.1021/ie4039955
      [31]
      X. Zhang, J. Zhang, R. Guo, Q. Xiao, Y.W. Feng, and H. Cheng, Highly reactive coke made from low-rank coal: Relationship between thermal properties and multilevel structure, Fuel, 337(2023), art. No. 127186. doi: 10.1016/j.fuel.2022.127186
      [32]
      X. Zhang, H.H. Deng, X.Y. Hou, R.L. Qiu, and Z.H. Chen, Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions, Renewable Energy, 142(2019), p. 284. doi: 10.1016/j.renene.2019.04.115
      [33]
      G.W. Wang, S. Ren, J.L. Zhang, et al., Influence mechanism of alkali metals on CO2 gasification properties of metallurgical coke, Chem. Eng. J., 387(2020), art. No. 124093. doi: 10.1016/j.cej.2020.124093
      [34]
      G.W. Wang, J.L. Zhang, G.H. Zhang, et al., Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends, Energy, 131(2017), p. 27. doi: 10.1016/j.energy.2017.05.023
      [35]
      L. Kieush, J. Schenk, A. Pfeiffer, A. Koveria, G. Rantitsch, and H. Hopfinger, Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties, Fuel, 309(2022), art. No. 122151. doi: 10.1016/j.fuel.2021.122151
      [36]
      M.M. Sun, J.L. Zhang, K.J. Li, K. Guo, Z.M. Wang, and C.H. Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1247. doi: 10.1007/s12613-019-1846-1
      [37]
      H.B. Zhu, W.L. Zhan, Z.J. He, Y.C. Yu, Q.H. Pang, and J.H. Zhang, Pore structure evolution during the coke graphitization process in a blast furnace, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1226. doi: 10.1007/s12613-019-1927-1
      [38]
      K.J. Li, J.L. Zhang, M. Barati, et al., Influence of alkaline (Na, K) vapors on carbon and mineral behavior in blast furnace cokes, Fuel, 145(2015), p. 202. doi: 10.1016/j.fuel.2014.12.086
      [39]
      T. Murakami and E. Kasai, Utilization of ores with high combined water content for ore–carbon composite and iron coke, ISIJ Int., 51(2011), No. 8, p. 1220. doi: 10.2355/isijinternational.51.1220
      [40]
      L. Deng, X.L. Huang, Y. Tie, et al., Experimental study on transformation of alkali and alkaline earth metals during biomass gasification, J. Energy Inst., 103(2022), p. 117. doi: 10.1016/j.joei.2022.06.003
      [41]
      W. Wang, J. Wang, R.S. Xu, Y. Yu, Y. Jin, and Z.L. Xue, Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace, Fuel Process. Technol., 159(2017), p. 118. doi: 10.1016/j.fuproc.2017.01.039
      [42]
      H. Gohar, A.H. Khoja, A.A. Ansari, et al., Investigating the characterisation, kinetic mechanism, and thermodynamic behaviour of coal–biomass blends in co-pyrolysis process, Process. Saf. Environ. Prot., 163(2022), p. 645. doi: 10.1016/j.psep.2022.05.063
      [43]
      R. Xu, B.W. Dai, W. Wang, J. Schenk, and Z. Xue, Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking, Fuel Process. Technol., 173(2018), p. 11. doi: 10.1016/j.fuproc.2018.01.006
      [44]
      J.C. Maya, R. Macías, C.A. Gómez, and F. Chejne, On the evolution of pore microstructure during coal char activation with steam/CO2 mixtures, Carbon, 158(2020), p. 121. doi: 10.1016/j.carbon.2019.11.088
      [45]
      W. Lv, F.R. Chen, Z.L. Liu, et al. , In situ compressive strength of iron coke in high-temperature carbonization, ISIJ Int., 62(2022), No. 9, p. 1827. doi: 10.2355/isijinternational.ISIJINT-2022-219
      [46]
      W.T. Guo, Q.G. Xue, C. Ling, H.B. Zuo, J.S. Wang, and Y.H. Han, Influence of pore structure features on the high temperature tensile strength of coke, Chin. J. Eng., 38(2016), No. 7, p. 930. doi: 10.13374/j.issn2095-9389.2016.07.006
      [47]
      J.W. Bao, M.S. Chu, H.T. Wang, et al., Evolution characteristics and influence mechanism of binder addition on metallurgical properties of iron carbon agglomerates, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2785. doi: 10.1007/s11663-020-01962-1
      [48]
      A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731. doi: 10.1016/j.carbon.2005.02.018
      [49]
      H. Dang, R.S. Xu, J.L. Zhang, M.Y. Wang, and J.H. Li, Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 268. doi: 10.1007/s12613-023-2728-0
      [50]
      T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33(1995), No. 11, p. 1561. doi: 10.1016/0008-6223(95)00117-V
      [51]
      M.J. Roberts, R.C. Everson, G. Domazetis, et al., Density functional theory molecular modelling and experimental particle kinetics for CO2–char gasification, Carbon, 93(2015), p. 295. doi: 10.1016/j.carbon.2015.05.053
      [52]
      D. Zhao, H. Liu, C.L. Sun, L.F. Xu, and Q.X. Cao, DFT study of the catalytic effect of Na on the gasification of carbon: CO2, Combust. Flame, 197(2018), p. 471. doi: 10.1016/j.combustflame.2018.09.002
      [53]
      H. Dang, R.S. Xu, J.L. Zhang, M.Y. Wang, and K. Xu, Hydrothermal carbonization of waste furniture for clean blast furnace fuel production: Physicochemical, gasification characteristics and conversion mechanism investigation, Chem. Eng. J., 469(2023), art. No. 143980. doi: 10.1016/j.cej.2023.143980
      [54]
      P. Wang, G.W. Wang, J.L. Zhang, J.Y. Lee, Y.J. Li, and C. Wang, Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char, Appl. Therm. Eng., 143(2018), p. 736. doi: 10.1016/j.applthermaleng.2018.08.009
      [55]
      G.W. Wang, J.L. Zhang, J.G. Shao, et al., Experimental and modeling studies on CO2 gasification of biomass chars, Energy, 114(2016), p. 143. doi: 10.1016/j.energy.2016.08.002
      [56]
      W. Liang, X. Ning, G.W. Wang, et al., Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke, Renew. Energy, 163(2021), p. 331. doi: 10.1016/j.renene.2020.08.142
      [57]
      M. Grigore, R. Sakurovs, D. French, and V. Sahajwalla, Coke gasification: The influence and behavior of inherent catalytic mineral matter, Energy Fuels, 23(2009), No. 4, p. 2075. doi: 10.1021/ef8006728
      [58]
      S.M. Shin and S.M. Jung, Gasification effect of metallurgical coke with CO2 and H2O on the porosity and macrostrength in the temperature range of 1100 to 1500°C, Energy Fuels, 29(2015), No. 10, p. 6849. doi: 10.1021/acs.energyfuels.5b01235
      [59]
      Q. Wang, E. Wang, K. Li, N. Husnain, and D. Li, Synergistic effects and kinetics analysis of biochar with semi-coke during CO2 co-gasification, Energy, 191(2020), art. No. 116528. doi: 10.1016/j.energy.2019.116528
      [60]
      J. Zsakó, The kinetic compensation effect, J. Therm. Anal., 9(1976), No. 1, p. 101. doi: 10.1007/BF01909271
      [61]
      S. Zhang, Z. Liang, K. Li, J. Zhang, and S. Ren, A density functional theory study on the adsorption reaction mechanism of double CO2 on the surface of graphene defects, J. Mol. Model., 28(2022), No. 5, art. No. 118. doi: 10.1007/s00894-022-05105-y

    Catalog


    • /

      返回文章
      返回